Open Access
Issue
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 05001
Number of page(s) 4
Section Poster Session (Lidar for Trace Gas Monitoring)
DOI https://doi.org/10.1051/epjconf/201611905001
Published online 07 June 2016
  1. Macke, A. 2014, HOPE—A German intensive field campaign to capture the spatiotemporal variability of the thermodynamics, energetics, and microphysics of the cloudy troposphere with high resolution, 14th Conference on At-mospheric Radiation, J6.4, Boston, MA, USA, July 07 - 11, 2014. [Google Scholar]
  2. Foth, A. et al. 2015, Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE, Atmos. Chem. Phys. Discuss. 15, 6567–6599. [CrossRef] [Google Scholar]
  3. Althausen, D. et al. 2009, Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization, J. Atmos. Oceanic Technol. 26, 2366–2378. [CrossRef] [Google Scholar]
  4. Di Girolamo, P. et al. 2009, Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event, J. Atmos. Oceanic Technol. 26, 1742–1762. [CrossRef] [Google Scholar]
  5. Whiteman, D. N. 2003, Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols, Appl. Opt. 42, 2593–2608. [CrossRef] [PubMed] [Google Scholar]
  6. England, M. N. et al. 1992, Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar, J. Geophys. Res. 97, 899–916. [CrossRef] [Google Scholar]
  7. Nash, J. et al. 2005, WMO intercomparison of high quality radiosonde systems: Final report, WMO Rep. p. 118 pp. [Google Scholar]
  8. Turner, D. D. et al. 2003, Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience, J. Atmos. Oceanic Technol. 20, 117–132. [CrossRef] [Google Scholar]
  9. Schneebeli, M. 2009, Advancements in Ground-Based Microwave Remote Sensing of the Troposphere - Calibration, Data Retrieval and Applications, PhD thesis, Institute of Applied Physics, University of Bern. [Google Scholar]
  10. Rodgers, C. D. 2000, Inverse Methods for At-mospheric Sounding - Theory and Practice, 2, Wolrd Scientific Publishing. [Google Scholar]
  11. Rosenkranz, P. W. 1998, Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science 33, 919–928. [CrossRef] [Google Scholar]
  12. Liebe, H. J. et al. 1991, A model for the complex permittivity of water at frequencies below 1 THz, I. J. Infrared Milli. 12, 659–675. [NASA ADS] [CrossRef] [Google Scholar]
  13. Karstens, U. et al. 1994, Remote sensing of cloud liquid water, Meteorol. Atmos. Phys. 54, 157–171. [CrossRef] [Google Scholar]
  14. Illingworth A. J. et al. 2007, Cloudnet, Bull. Amer. Meteorol. Soc. 88, 883–898. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.