Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 05003
Number of page(s) 4
Section Poster Session (Lidar for Trace Gas Monitoring)
Published online 07 June 2016
  1. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2”, Appl. Opt., 48(28):5413–5422, 2009. [CrossRef] [PubMed]
  2. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis”, Appl. Physics B, 90(3-4):593–608, 2008. [CrossRef]
  3. A-SCOPE (Adances Space Carbon and Climate Observation of Planet Earth), ESA Report for Assessment, SP-1313/1, 2008.
  4. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer”, Appl. Opt., 45(18):4448–4458, 2006. [CrossRef] [PubMed]
  5. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Sideline tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements”, Appl. Opt., 47(7):944–956, 2008. [CrossRef] [PubMed]
  6. J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre. “Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 μm range”, Opt. Lett., 39(23):6719–6722, 2014. [CrossRef] [PubMed]
  7. A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4”, 2011.
  8. K. Numata, S. Wu, and H. Riris, “Fastswitching methane lidar transmitter based on a seeded optical parametric oscillator,” Appl.Physics B, 116(4):959–966, 2014. [CrossRef]
  9. D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Groundbased demonstration of a CO2 remote sensor using a 1.57μm differential laser absorption spectrometer with direct detection”, Journal of Applied Remote Sensing, 4(1):043548–043548–17, 2010. [CrossRef]
  10. U. N. Singh, J. Yu, M. Petros, T. F. Refaat, R. Remus, J. Fay, K. Reithmaier, “Column CO2 measurement from an airborne solid-state double-pulsed 2-micron integrated path differential absorption lidar”, Proceedings of the International Conference on Space Optics, 2014.
  11. T. F. Refaat, U. N. Singh, J. Yu, M. Petros, S. Ismail, M. J. Kavaya, and K. J. Davis, “Evaluation of an airborne triple-pulsed 2μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements”, Appl. Opt., 54(6):1387–1398, 2015. [CrossRef] [PubMed]
  12. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the tm 3f4 and ho 5i7 manifolds in tm-sensitized ho luminescence”, Journal of Luminescence, 75(2):89 – 98, 1997. [CrossRef]
  13. M. Eichhorn, “Quasi-three-level solidstate lasers in the near and mid infrared based on trivalent rare earth ions”, Appl. Physics B, 93(2-3):269–316, 2008. [CrossRef]
  14. D. Edouart, F. Gibert, F. Le Mounier, C. Cénac, P. H. Flamant, “2-μm high repetition rate laser transmitter for CO2 and Wind Lidar (COWI)”, 11-14, Proceedings of the 26th International Laser Radar Conference, 2012.
  15. F. Gibert, D. Edouart, C. Cénac, and F. Le Mounier, “2-μm high-power multiplefrequency single-mode Q-switched Ho:YLF laser for dial application”, Appl. Physics B, 116(4):967–976, 2014. [CrossRef]
  16. N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:ho upconversion: applications to ho lasers”, J. Opt. Soc. Am. B, 20(6):1212–1219, 2003. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.