Open Access
Issue
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 06016
Number of page(s) 4
Section Poster Session (Advances in Lidar Technologies and Techniques I)
DOI https://doi.org/10.1051/epjconf/201611906016
Published online 07 June 2016
  1. Dinoev, T., 2009: Automated Raman lidar for day and night operational observation of tropospheric water vapor for meteorological applications (Doctoral dissertation, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE). [Google Scholar]
  2. Renaut, D., & Capitini, R., 1988: Boundarylayer water vapor probing with a solar-blind Raman Lidar: validations, meteorological observations and prospects, Journal of Atmospheric and Oceanic Technology, 5(5), 585-601. [CrossRef] [Google Scholar]
  3. Demtroder, W., & Demtroder, W., 2005: Molecular physics: theoretical principles and experimental methods, Wiley VCH. [Google Scholar]
  4. Whiteman, D. N., Melfi, S. H., & Ferrare, R. A., 1992: Raman Lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere, Applied Optics, 31(16), 3068-3082. [CrossRef] [PubMed] [Google Scholar]
  5. Goldsmith, J. E. M., Blair, F. H., Bisson, S. E., & Turner, D. D., 1998: Turn-key Raman Lidar for profiling atmospheric water vapor, clouds, and aerosols, Applied Optics, 37(21), 4979-4990. [CrossRef] [PubMed] [Google Scholar]
  6. Froidevaux, M., Higgins, C. W., Simeonov, V., Ristori, P., Pardyjak, E., Serikov, I., … & Parlange, M. B., 2013: A Raman lidar to measure water vapor in the atmospheric boundary layer. Advances in Water Resources, 51, 345-356. [CrossRef] [Google Scholar]
  7. Ansmann A., Tesche M., Althausen D., et al., 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment, Journal of Geophysical Research: Atmospheres (1984–2012), 113(D4). [Google Scholar]
  8. Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., … & Seefeldner, M., 2009: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B, 61(1), 165-179. [CrossRef] [Google Scholar]
  9. Sassen, K., Zhu, J., Webley, P., Dean, K., & Cobb, P., 2007: Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska. Geophysical Research Letters, 34(8). [Google Scholar]
  10. Wiegner M, Gasteiger J, Kandler K, et al., 2008: Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications. Tellus B, 61(1), 180-194. [CrossRef] [Google Scholar]
  11. Cariou, J. P., & Boquet, M., 2011: Leosphere pulsed lidar principles. Leosphere, Orsay (FR), 1-32. [Google Scholar]
  12. Pal, S. R., Steinbrecht, W., & Carswell, A. I., 1992: Automated method for lidar determination of cloud-base height and vertical extent, Applied optics, 31(10), 1488-1494. [CrossRef] [PubMed] [Google Scholar]
  13. Winker, D. M., & Vaughan, M. A., 1994: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs, Atmospheric research, 34(1), 117-133. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.