Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 11004
Number of page(s) 4
Section Lidar Cloud Studies
Published online 07 June 2016
  1. Sassen, K., et al., 1989: Optical scattering and microphysical properties of subvisual cirrus clouds, and climate implications. Journal of Applied Meteorology, 28. [Google Scholar]
  2. Jensen, E.J., O et al., 1996: On the formation and persistence of subvisual cirrus clouds near the tropical tropopause. Journal of Geophysical Research, 101, 95JD03575 [Google Scholar]
  3. IPCC: Climate Change 2013 – The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014. [Google Scholar]
  4. Spang, R., et al., S. 2015: Satellite observations of cirrus clouds in the Northern Hemisphere lowermost stratosphere, Atmos. Chem. Phys., 15, 927-950, doi:10.5194/acp-15-927-2015. [CrossRef] [Google Scholar]
  5. Immler, F., Treffeisen, R., Engelbart, D., Krüger, K., and Schrems, O. 2008: Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes, Atmos. Chem. Phys., 8, 1689-1699, doi:10.5194/acp-8-1689-2008. [CrossRef] [Google Scholar]
  6. Welton, et al, 2001, Global monitoring of clouds and aerosols using a network of micropulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring. Proc. SPIE, 4153, 151-158, 2001 [CrossRef] [Google Scholar]
  7. Lolli S., Welton E. J., Campbell J. R., 2013: Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling. J. Atmos. Oceanic Technol., 30, 2798–2807. [Google Scholar]
  8. Heymsfield, A. et al., 2014: Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0° to −86°C: Implications for Spaceborne Lidar Retrievals*. J. Appl. Meteor. Climatol., 53, 479–505. [CrossRef] [Google Scholar]
  9. Fu, Q. and Liou, K. N. 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139–2156. [Google Scholar]
  10. Gu, Y. et al.,: 2003: Parameterization of cloud-radiation processes in the UCLA general circulation model, J. Climate, 16, 3357–3370. [CrossRef] [Google Scholar]
  11. Grenfell, T. C., and S. G. Warren, 1999: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation, J. Geophys. Res., 104(D24), 31,697–31,709. [CrossRef] [Google Scholar]
  12. Spinhirne, J.D., et al., 1995 Compact Eye Safe Lidar Sys., Rev. Laser Eng., 23, 112-118, [CrossRef] [Google Scholar]
  13. Lolli, S., et al, 2011. EZ Lidar: A new compact autonomous eye-safe scanning aerosol lidar for extinction measurements and PBL height detection. Validation of the performances against other instruments and intercomparison campaigns. Ópt.Pura y Apl., 44 (1), 33-41. [Google Scholar]
  14. Reverdy, M., et al, 2012: On the origin of subvisible cirrus clouds in the tropical upper troposphere, Atmos. Chem. Phys., 12, 12081-12101, doi:10.5194/acp-12-12081-2012 [CrossRef] [Google Scholar]
  15. Solomon, S., et al., 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming, Science, 327, 1219-33 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.