Open Access
EPJ Web Conf.
Volume 124, 2016
32èmes journées des Laboratoires Associés de Radiophysiques et de Dosimétrie, L.A.R.D. 2015
Article Number 00003
Number of page(s) 15
Published online 21 September 2016
  1. IAEA (2010) Training Course Series 42, Radiation Biology: A Handbook for Teachers and Students. Vienna, International Atomic Energy Agency, 13–32. [Google Scholar]
  2. C. R. Hunt et al., Histone Modifications and DNA Double-Strand Break Repair after Exposure to Ionizing Radiations, Radiation Research 179, 383–392, (2013) [CrossRef] [PubMed] [Google Scholar]
  3. V. A. Sharpatyi, Z. Gennady, Dans: Radiation chemistry of biopolymers. CRC Press, Taylor and Francis Group, (2006). [CrossRef] [Google Scholar]
  4. O. Boulanouar, et al., Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite. J. Chem. Phys. 139 (5),055104, (2013) [CrossRef] [PubMed] [Google Scholar]
  5. J. P. Freyer et al., Measurement of the G-value for 1.5 keV X-rays. Int. J. Radiat. Biol. 56(6):885–892, (1989) [CrossRef] [PubMed] [Google Scholar]
  6. S. Uehara, H. Nikjoo, Monte Carlo simulation of water radiolysis for low-energy charged particles. J. Radiat. Res. 47(1), 69–81, (2006) [CrossRef] [PubMed] [Google Scholar]
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th edition, New York: Garland Science, (2002) [Google Scholar]
  8. I. Zs.-Nagy, R.A. Floyd, Hydroxyl free radical reactions with amino acids and proteins studied by electron spin resonance spectroscopy and spin-trapping. Biochimica et Biophysica Acta, 790, 238–250, (1984) [CrossRef] [PubMed] [Google Scholar]
  9. N. Ounoughi, Beam characterization of a lab bench cold cathode ultra-soft X-ray generator, NIM B, 305, 61–66, (2013) [CrossRef] [Google Scholar]
  10. J.E. Groetz, Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam, Review of Scientific Instruments, 85, 83304, (2014) [CrossRef] [Google Scholar]
  11. N. Ounoughi et al., Spatial Distribution of Air Kerma Rate and Impact of Accelerating Voltage onthe Quality of an Ultra Soft X-ray Beam generated by a Cold Cathode Tube in Air. Radiation Measurements, 80, 23–28, (2015) [CrossRef] [Google Scholar]
  12. M. Souici et al., DNA Strand Break Yield dependence on Tris and Arginine Scavenger concentrations under Ultra-Soft X-ray irradiation: the contribution of Secondary Arginine Radicals. Accepté dans Radiation and Environmental Biophysics, (2015) [Google Scholar]
  13. K.L. Manchester, Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques, 20(6),968–970, (1996) [CrossRef] [PubMed] [Google Scholar]
  14. M. Spotheim-Maurizot et al., DNA radiolysis by fast neutrons. Int. J. Radiat. Biol. 57(2), 301–313, (1990) [CrossRef] [PubMed] [Google Scholar]
  15. M. Spotheim-Maurizot et al., DNA radiolysis by fast neutrons. II. Oxygen, thiols and ionic strength effects. Int. J. Radiat. Biol. 59(6),1313–1324, (1990) [CrossRef] [Google Scholar]
  16. C. Kemker “Dissolved Oxygen.” Fundamentals of Environmental Measurements. Fondriest Environmental, (2013), Inc. /parameters/water-quality/dissolved-oxygen/ [Google Scholar]
  17. H. Yamaguchi, Y. Uchihori, N. Yasuda, M. Takada and H. Kitamura, Estimation of Yields of OH Radicals in Water Irradiated by Ionizing Radiation. J. Radiat. Res. 46, 333–34, (2005) [CrossRef] [PubMed] [Google Scholar]
  18. G.V. Buxton et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886, (1988) [CrossRef] [Google Scholar]
  19. R. Roots, S. Okada, Estimation of Life Times and Diffusion Distances of Radicals Involved in X-Ray-InducedD NA Strand Breaks or Killing of Mammalian Cells. Radiation Research 64, 306–320, (1975) [CrossRef] [PubMed] [Google Scholar]
  20. G. Scholes, P. Shaw, R.L. Willson, M. Ebert, Dans: Pulse Radiolysis, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.), Academic Press, New York, 151–64 (1965). [Google Scholar]
  21. T. Masuda, S. Nakano, M. J. Kondo, Rate constants for the reactions of OH radicals with the enzyme proteins as determined by the p-nitrosodimethylaniline method. J. Radiat. Res. 14, 339–345 (1973) [CrossRef] [PubMed] [Google Scholar]
  22. N. Motohashi and Y. Saito, Competitive measurement of rate constants for hydroxykl radical reactions using radiolytic hydroxylation of benzoate. Chem. Pharm. Bull. 41, 1842–1845. (1993) [CrossRef] [Google Scholar]
  23. M. Hicks, J. M. Gebicki, Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Letters, 199(1), 92–94 (1986) [CrossRef] [Google Scholar]
  24. P.S. Hodgkins, M.P. Fairman and P. O’Neill, Rejoining of Gamma-Radiation-Induced Single-Strand Breaks in Plasmid DNA by Human Cell Extracts: Dependence on the Concentrationo f the HydroxyRl adicalS cavenger,Tris. Radiation Research 145, 24–30 (1996) [CrossRef] [PubMed] [Google Scholar]
  25. J. R. Milligan, J. A. Aguilera, J. F. Ward, Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiated in aqueous solution. Radiation Research 133(2),151–157 (1993) [CrossRef] [PubMed] [Google Scholar]
  26. J. Fulford, P. Bonner, D.T. Goodhead, M.A. Hill, P. O’Neill, Experimental Determination of the Dependence of OH Radical Yield on Photon Energy: A Comparison with Theoretical Simulations. J. Phys. Chem. A 103,11345–11349 (1999) [CrossRef] [Google Scholar]
  27. J. A. Imlay, S. M. Chin, S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240(4852), 640–642 (1988) [CrossRef] [PubMed] [Google Scholar]
  28. J.F. Mouret, M. Polverelli, F. Sarrazini, and J. Cadet, Ionic and radical oxidations of DNA by hydrogen peroxide, Chem.-Biol. Interactions, 77, 187–201 (1991) [CrossRef] [Google Scholar]
  29. N. M. Luscombe, R. A. Laskowski, J. M. Thornton, Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Research, 29, 13, 2860–2874 (2001) [CrossRef] [PubMed] [Google Scholar]
  30. G. Xu, K.Takamoto, and M. R. Chance, Radiolytic Modification of Basic Amino Acid Residues in Peptides: Probes for Examining Protein-Protein Interactions. Anal. Chem. 75, 6995–7007 (2003) [CrossRef] [PubMed] [Google Scholar]
  31. S. Navaratnam and B. J. Parsons, Reduction potential of histidine free radicals: a pulse radiolysis study. J. Chem. Soc., Faraday Trans., 94 (17), 2577–2581 (1998) [Google Scholar]
  32. O. Cantoni, P. Sestili, G. Brandi, F. Cattabeni, The L-histidine-mediated enhancement of hydrogen peroxide-induced cytotoxicity is a general response in cultured mammalian cell lines and is always associated with the formation of DNA double strand breaks, FEBS Letters, 353, 75–78 (1994) [CrossRef] [PubMed] [Google Scholar]
  33. P. Tachon, A. Deflandre and P.U. Giacomoni, Modulation by L-histidine of H2O2-mediated damage of cellular and isolated DNA. Carcinogenesis, 15 (8),1621–1626 (1994) [CrossRef] [PubMed] [Google Scholar]
  34. K. Uchida and S. Kawakishi, 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett., 332, 208–210 (1993) [CrossRef] [PubMed] [Google Scholar]
  35. J.R. Milligan, J.A. Aguilera, A. Ly, N.Q.Tran, O. Hoang and J. F., Ward Repair of oxidative DNA damage by amino acids. Nucleic Acids Research, 31 (21),6258–6263 (2003) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.