Open Access
Issue
EPJ Web Conf.
Volume 124, 2016
32èmes journées des Laboratoires Associés de Radiophysiques et de Dosimétrie, L.A.R.D. 2015
Article Number 00007
Number of page(s) 19
DOI https://doi.org/10.1051/epjconf/201612400007
Published online 21 September 2016
  1. M. Westermark, et al., Comparative dosimetry in narrow high-energy photon beams, Physics in Med-icine and Biology, 45, 685–702 (2000) [CrossRef] [Google Scholar]
  2. C. McKerracher and D.I., Thwaites, Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition, Physics in Medicine and Biology, 44, 2143–2160 (1999) [CrossRef] [PubMed] [Google Scholar]
  3. E. Pappas, et al., Small SRS photon field profile dosimetry performed using a PinPoint air ion cham-ber, a diamond detector, a novel silicondiodearray (DOSI), and polymer gel dosimetry: analysis and intercomparison, Medical Physics, 35, 4640–46488 [CrossRef] [PubMed] [Google Scholar]
  4. R. Alfonso, et al., A new formalism for reference dosimetry of small and nonstandard fields, Medical Physics, 35, 5179–86 (2008) [CrossRef] [PubMed] [Google Scholar]
  5. C.F. Bjarngard, et al., Doses on the central axes of narrow 6-MV x-ray beams. Medical Physics, 17, 794–799 (1990) [CrossRef] [PubMed] [Google Scholar]
  6. L. Kurjewicz and A. Berndt, Measurement of Gamma Knife® helmet factors using MOSFETs, Medical Physics, 34, 1007–1012 (2007) [CrossRef] [PubMed] [Google Scholar]
  7. P. Francescon, et al., Use of new types of radiochromic film, a new parallel plate chamber, MOSFETs and TLD 800 microcubes in the dosimetry of small beams. Medical Physics, 25, 503–511 (1998) [CrossRef] [PubMed] [Google Scholar]
  8. P. Francescon, et al., Application of a Monte Carlo based method for total scatter factors of small beams to new solid-state micro-detectors, Journal of Applied Clinical Medical Physics, 10, 29–39 (2009) [CrossRef] [Google Scholar]
  9. R. Ramaseshan, et al., Performance characteristics of a microMOSFET as in vivo dosimeter in radia-tion therapy, Physics in Medicine and Biology, 49, 4031–4048 (2004) [CrossRef] [PubMed] [Google Scholar]
  10. C.J. Tung, et al., In vivo dose verification for photon treatments of head and neck carcinomas using MOSFET dosimeters, Radiation Measurements. 43, 870–874 (2008) [CrossRef] [Google Scholar]
  11. Z. Chen, et al., Principles and requirements of external beam dosimetry, Radiation Measurements, 41, S2–S21 (2007) [CrossRef] [Google Scholar]
  12. C.F. Chuang, et al., Investigation of the use of MOSFET for clinical IMRT dosimetric verification, Medical Physics, 29, 1109–1115 (2002) [CrossRef] [PubMed] [Google Scholar]
  13. S. Marcié, et al., In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy, International Journal of Radiation Oncology Biology Physics, 61, 1603–1606 (2005) [CrossRef] [Google Scholar]
  14. R. Varadhan, J. Miller, B. Garrity, M. Weber, In vivo prostate IMRT dosimetry with MOSFET de-tectors using brass buildup caps, Journal of Applied Clinical Medical Physics, 7, 22–32 (2006) [CrossRef] [Google Scholar]
  15. A. Cherpak, et al., MOSFET detectors in quality assurance of Tomotherapy, Radiotherapy and On-cology, 86, 242–250 (2008) [CrossRef] [Google Scholar]
  16. P. Scalchi, et al., Characterization of a new MOSFET detector configuration for in vivo skin dosim-etry, Medical Physics, 32, 1571–1578 (2005) [CrossRef] [PubMed] [Google Scholar]
  17. J.P. Morton, et al., Clinical results of entrance dose in-vivo dosimetry for high energy photon in ex-ternal beam radiotherapy using MOSFETs, Australasian College of Physical Scientists and Engineers in Medicine, 30, 252–259 (2007) [CrossRef] [Google Scholar]
  18. T. Briere, A.S. Beddar, M.T. Gillin, Evaluation of precalibrated implantable MOSFET radiation do-simeters for megavoltage photon beams, Medical Physics, 32 (11),3346–49 (2005) [CrossRef] [PubMed] [Google Scholar]
  19. J.E. Cygler, et al., Feasibility study of using MOSFET detectors for in vivo dosimetry during perma-nent low-dose-rate prostate implants, Radiotherapy and Oncology, 80, 296–301 (2006) [CrossRef] [Google Scholar]
  20. C. Ehringfeld, S. Schmid, K. Poljanc, C. Kirisits, H. Aiginger, D.Georg, Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV, Phys Med Biol. 50, 289–303 (2005) [CrossRef] [PubMed] [Google Scholar]
  21. E.J. Bloemen-van Gurp, et al., Clinical implementation of MOSFET detectors for dosimetry in elec-tron beams, Radiotherapy and Oncology, 80, 288–295 (2006) [CrossRef] [Google Scholar]
  22. A.B. Rosenfeld, MOSFET dosimetry on modern radiation oncology modalities, Radiation Protection Dosimetry, 101, 393–398 (2002) [CrossRef] [PubMed] [Google Scholar]
  23. R. Ramani, et al., Clinical dosimetry using MOSFETs, International Journal of Radiation Oncology Biology Physics, 37, 959–964 (1997) [CrossRef] [Google Scholar]
  24. A.B. Rosenfeld, Electronic dosimetry in radiation therapy, Radiation Measurements, 41, 134–153 (2007) [CrossRef] [Google Scholar]
  25. A. Sors, et al. An optimized calibration method for surface measurements with MOSFETs in shaped-beam radiosurgery, Physica Medica, 30(1),10–17 (2014) [CrossRef] [Google Scholar]
  26. M. Soubra, et al. Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect tran-sistor detector as radiation dosimeter, Medical Physics, 21 (4),567–72 (1994) [CrossRef] [PubMed] [Google Scholar]
  27. E.A. Gardner, et al., In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery, Journal of Applied Clinical Medical Physics, 13 (3),190–203 (2012) [CrossRef] [Google Scholar]
  28. A. Gopiraj et V. Ramasubramanian, Entrance and Exit Dose Measurements with MOSFET Detectors During Radiotherapy Treatments, Austral-Asian Journal of Cancer, 8(3), 151–158 (2009) [Google Scholar]
  29. R.A. Kinhikar, R. Pai, Z. Master, D.D. Deshpande, Characterization of metal oxide field-effect tran-sistors for first helical tomotherapy Hi-Art II unit in India, Journal of cancer research and therapeutics, 5 (4),284–289 (2009) [CrossRef] [PubMed] [Google Scholar]
  30. I.J. Das, et al., Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy, Journal of Radiosurgery, 3, 177–185 (2000) [CrossRef] [Google Scholar]
  31. P.A. Jursinic and C.J. Yahnke, In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material, Medical Physics, 38(10), 5432–5440 (2011) [CrossRef] [PubMed] [Google Scholar]
  32. N. Hardcastle, D.L. Cutajar, P.E. Metcalfe, M.L.F Lerch, V.L. Perevertaylo, W.A. Tome, A.B. Ro-zenfeld, In vivo real-time rectal wall dosimetry for prostate radiotherapy, Physics in Medicine and Biology, 55(13), 3859–3871 (2010) [CrossRef] [PubMed] [Google Scholar]
  33. A. Piermattei, et al., Dynamic conformal arc therapy: Transmitted signal in vivo dosimetry, Medical Physics, 35(5), 1830–1839 (2008) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.