Open Access
EPJ Web Conf.
Volume 125, 2016
The 19th International Seminar on High Energy Physics (QUARKS-2016)
Article Number 02022
Number of page(s) 11
Section 2. Physics beyond the Standard Model at colliders and in rare processes; Higgs phenomenology and selected experimental results
Published online 28 October 2016
  1. K. Nagamine, Introductory Muon Science, (Cambridge University Press, Cambridge UK, 2003) 208 pp [Google Scholar]
  2. J. Marteau, D. Gibert, N. Lesparre, et al., Muons tomography applied to geosciences and volcanology, Nucl. Instr. Meth. Phys. Res. A 695, 23–28 (2012) [CrossRef] [Google Scholar]
  3. H.K.M. Tanaka, H. Muraoka, Interpreting muon radiographic data in a fault zone: possible application to geothermal reservoir detection and monitoring, Geosci. Instrum. Method. Data Syst. 2, 145–150 (2013) [CrossRef] [Google Scholar]
  4. D. Bryman, J. Bueno, J. Jansen, Blind Test of Muon Geotomography for Mineral Exploration, ASEG Extended Abstracts 2015(1), pp. 1–3 [CrossRef] [Google Scholar]
  5. H.K.M. Tanaka, H. Miyajima, T. Kusagaya, et al., Cosmic muon imaging of hidden seismic fault zones: rainwater permeation into the mechanical fractured zones in Itoigawa-Shizuoka Tectonic Line, Earth and Planetary Science Letters, 306, 156–162 (2011) [Google Scholar]
  6. H.K.M. Tanaka, T. Nakano, S. Takahashi, et al., Imaging the conduit size of the dome with cosmic-ray muons: The structure beneath Showa-Shinzan Lava Dome, Japan, Geophysical Research Letters, 34, L22311, (2007) [Google Scholar]
  7. H.K.M. Tanaka, T. Nakano, S. Takahashi, et al., Radiographic imaging below a volcanic crater floor with cosmic-ray muons, American Journal of Science, 308, 843–850, (2008) [CrossRef] [Google Scholar]
  8. H.K.M. Tanaka, H. Taira, T. Uchida, et al., Three-dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography, Journal of Geophysical Research, 115, B12332 (2010) [CrossRef] [Google Scholar]
  9. F. Fehr, Density imaging of volcanos with atmospheric muons, Proc. ICRC2011, v. 4/12 (0671), p. 321 (2011) [Google Scholar]
  10. H.K.M. Tanaka, T. Kusagaya & H. Shinohara, Radiographic visualization of magma dynamics in an erupting volcano, Nature Communications, 5, 3381 (2014) [PubMed] [Google Scholar]
  11. W.B. Gilboy, P.M. Jenneson, S.J.R. Simons, et al., Muon radiography of large industrial structures, Nucl. Instr. Meth. Phys. Res. B 263, 317–319 (2007) [CrossRef] [Google Scholar]
  12. L.W. Alvarez, J.A. Anderson, F. El Bredwei, et al., Search for Hidden Chambers in the Pyramids, Science, 167, 832–839, (1970) [CrossRef] [PubMed] [Google Scholar]
  13. [Google Scholar]
  14. J Perry, M Azzouz, J Bacon, et al., Imaging a nuclear reactor using cosmic ray muons, Journal of Applied Physics 113 (18), 184909 (2013) [CrossRef] [Google Scholar]
  15. J. M. Durham, E. Guardincerri, C. L. Morris, et al., Tests of cosmic ray radiography for power industry applications, AIP Advances, 5, 067111 (2015) [CrossRef] [Google Scholar]
  16. K. Borozdin, S. Greene, Z. Lukic, et al., Cosmic ray radiography of the damaged cores of the Fukushima reactors, Physical Review Letters, 109 (15), 152501 (2012) [CrossRef] [PubMed] [Google Scholar]
  17. H. Miyadera, K.N. Borozdin, S.J. Greene, et al., Imaging Fukushima Daiichi reactors with muons, AIP Advances, 3 (5), 052133 (2013) [CrossRef] [Google Scholar]
  18. C.L. Morris, C.C. Alexander, J.D. Bacon et al., Tomographic imaging with cosmic ray muons, Sci. Global Security, 16, 37–53 (2008) [CrossRef] [Google Scholar]
  19. M. Alamaniotis, S. Terrill, J. Perry, et al., A multisignal detection of hazardous materials for homeland security, Nuclear Technology & Radiation Protection, 24 (1), 46–55 (2009) [CrossRef] [Google Scholar]
  20. K. Morishima, T. Nakano, N. Naganawa et al., Development on the Cosmic Ray Muon Radiography of the Nuclear Reactor with Nuclear Emulsion and an Appilcation Examination to the Fukushima Daiichi Nuclear Power Plant Accident, report on OPERA collaboration meeting, Nagoya, 28.03.2012 [Google Scholar]
  21. G.V. Valery, High Resolution Radiography with Cosmic-ray Muons, A dissertation submitted to the Department of Physics, University of Surrey, 2010 [Google Scholar]
  22. N. Lesparre, J. Marteau, Y. Declaiset, et al., Design and operation of a field telescope for cosmic ray geophysical tomography, Geosci. Instrum. Method. Data Syst., 1, 33–42 (2012) [CrossRef] [Google Scholar]
  23. C. Carloganu, V. Niess, S. Bene, et al., Towards a muon radiography of the Puy de Dome, Geosci. Instrum. Method. Data Syst., 2, 55–60 (2013) [CrossRef] [Google Scholar]
  24. H.K.M. Tanaka, Evaluation of positioning and density profiling accuracy of muon radiography by utillizing a 15-ton steel block, Geosci. Instrum. Method. Data Syst., 2, 79–83 (2013) [CrossRef] [Google Scholar]
  25. C.F. Powell, P.H. Fowler, D.H. Perkinset, The study of elementary particles by the photographic method; an account of the principal techniques and discoveries, illustrated by an atlas of photomicrographs, (Pergamon Press, London, New York, 1959) [Google Scholar]
  26. K. Morishima, Latest Developments in Nuclear Emulsion Technology, Physics Procedia, 80, 19–24 (2015) [CrossRef] [Google Scholar]
  27. T. Ariga, A. Ariga, K. Kuwabara, et al., Extra-large crystal emulsion detectors towards future large-scale experiments, JINST, 11, P03003 (2016) [Google Scholar]
  28. L. Arrabito, E. Barbuto, C. Bozza, et al, Hardware performance of a scanning system for high speed analysis of nuclear emulsions, Nucl. Instrum. Meth. A 568, 578–587 (2006) [CrossRef] [Google Scholar]
  29. C. Bozza, T. Nakano, Automatic microscopes for nuclear emulsion readout in high-energy and particle physics Current Microscopy Contributions to Advances in Science and Technology (A. Méndez-Vilas, Ed.) 2012 [Google Scholar]
  30. T. Fukuda, S. Fukunaga, H. Ishida, Automatic scanning of nuclear emulsions with wide-angle acceptance for nuclear fragment detection, JINST, 8, P01023 (2013) [CrossRef] [Google Scholar]
  31. A. Alexandrov, A. Buonaura, L. Consiglio, et al., A new generation scanning system for the high-speed analysis of nuclear emulsions, Journal of Instrumentation, 11 (06), P06002–P06002 (2016) [Google Scholar]
  32. N. Agafonova, A. Aleksandrov, A. Anokhina, et al. (OPERA Collaboration), Search for oscillations with the OPERA experiment in the CNGS beam, JHEP 07 004 (2013) [CrossRef] [Google Scholar]
  33. A. Aleksandrov, L. Kashkarov, N. Polukhina, N. Starkov, The Pattern Recognition Software for Automatic Treatment of Track Detector Data at the PAVICOM Completely Automated Measuring Facility, Radiat. Meas., 43, Suppl. 1, S120–S124 (2008) [CrossRef] [Google Scholar]
  34. A.B. Aleksandrov, A.V. Bagulya, M.M. Chernyavsky, et al., Test Experiments on Muon Radiography with Emulsion Track Detectors in Russia, Physics Procedia, 80, 78–80 (2015) [CrossRef] [Google Scholar]
  35. S. Agostinelli, J. Allison, K. Amakoe, et al., Geant4 - a simulation toolkit, Nucl. Instr. Meth. Phys. Res. A 506 (3), 250–303 (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.