Open Access
EPJ Web Conf.
Volume 125, 2016
19th International Seminar on High Energy Physics (QUARKS-2016)
Article Number 05008
Number of page(s) 9
Section 5. Modern field theory and selected aspects of mathematical physics
Published online 28 October 2016
  1. N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158, hep-th/9705117. [CrossRef]
  2. N. Beisert, On Yangian Symmetry in Planar N = 4 SYM, In *Trieste 2010, Gribov-80 Memorial Volume*, pp. 413-438, arXiv:1004.5423 [hep-th].
  3. T. Dennen, Yu-tin Huang, Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes, JHEP 1101 (2011) 140, arXiv:1010.5874 [hep-th]. [CrossRef]
  4. A.A. Tseytlin, On non-abelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41-52, arXiv:hep-th/9701125.
  5. J.M. Drummond, P.J. Heslop, P.S. Howe, S.F. Kerstan, Integral invariants in N = 4 SYM and the effective action for coincident D-branes, JHEP 0308 (2003) 016, arXiv:hep-th/0305202. [CrossRef]
  6. Z. Bern, L.J. Dixon, V.A. Smirnov, Iteration of planar amplitudes in maximally super-symmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001, arXiv:hep-th/0505205. [CrossRef] [MathSciNet]
  7. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, The Complete Four-Loop Four-Point Amplitude in N=4 Super-Yang-Mills Theory, Phys. Rev. D 82 (2010) 125040, arXiv:1008.3327 [hep-th. [CrossRef]
  8. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, Simplifying Multiloop Integrands and Ultraviolet Divergences of Gauge Theory and Gravity Amplitudes, Phys. Rev. D 85 (2012) 105014, arXiv:1201.5366 [hep-th]. [CrossRef]
  9. G. Bossard, P.S. Howe, U. Lindstrom, K.S. Stelle, L. Wulff, Integral invariants in maximally supersymmetric Yang-Mills theories, JHEP 1105 (2011) 021, arXiv:1012.3142 [hep-th]. [CrossRef]
  10. N. Berkovits, M.B. Green, J.G. Russo, P. Vanhove, Non-renormalization conditions for four-gluon scattering in supersymmetric string and field theory, JHEP 0911 (2009) 063, arXiv:0908.1923 [hep-th]. [CrossRef]
  11. J. Bjornsson, M.B. Green, 5 loops in 24/5 dimensions, JHEP 1008 (2010) 132, arXiv:1004.2692 [hep-th]. [CrossRef]
  12. J. Bjornsson, Multi-loop amplitudes in maximally supersymmetric pure spinor field theory, JHEP 1101 (2011) 002, arXiv:1009.5906 [hep-th]. [CrossRef]
  13. P.S. Howe, K.S. Stelle, P.C. West, N = 1, d = 6 harmonic superspace, Class. Quant. Grav. 2 (1985) 815. [CrossRef]
  14. B.M. Zupnik, Six-dimensional Supergauge Theories in the Harmonic Superspace, Sov. J. Nucl. Phys. 44 (1986) 512
  15. [Yad.Fiz. 44 (1986) 794–802];
  16. B.M. Zupnik, The Action of the Supersymmetric N = 2 Gauge Theory in Harmonic Superspace, Phys. Lett. B 183 (1987) 175–176.
  17. A.S. Galperin, E.A. Ivanov, S. Kalitzin, V.I. Ogievetsky, E.S. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469–498. [CrossRef]
  18. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, 2001, 306 p.
  19. E.A. Ivanov, A.V. Smilga, B.M. Zupnik, Renormalizable supersymmetric gauge theory in six dimensions, Nucl. Phys. B 726 (2005) 131–148, arXiv:hep-th/0505082.
  20. E.A. Ivanov, A.V. Smilga, Conformal properties of hypermultiplet actions in six dimensions, Phys. Lett. B 637 (2006) 374–381, arXiv:hep-th/0510273.
  21. I.L. Buchbinder, N.G. Pletnev, Construction of 6D supersymmetric field models in N = (1,0) harmonic superspace, Nucl.Phys. B 892 (2015) 21-48, arXiv:1411.1848 [hep-th]. [CrossRef]
  22. I.L. Buchbinder, N.G. Pletnev, Leading low-energy effective action in the 6D hypermultiplet theory on a vector/tensor background, Phys. Lett. B 744 (2015) 125–130, arXiv:1502.03257 [hep-th].
  23. G. Bossard, E. Ivanov, A. Smilga, Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace, JHEP 1512 (2015) 085, arXiv:1509.08027 [hep-th].
  24. G. Bossard, P.S. Howe, K.S. Stelle, The Ultra-violet question in maximally supersymmetric field theories, Gen. Rel. Grav. 41 (2009) 919, arXiv:0901.4661 [hep-th]. [CrossRef]
  25. P.S. Howe, G. Sierra, P.K. Townsend, Supersymmetry in six dimensions, Nucl. Phys. B 221 (1983) 331–348.
  26. P.S. Howe, K.S. Stelle, Ultraviolet Divergences in Higher Dimensional Supersymmetric Yang-Mills Theories, Phys. Lett. B 137 (1984) 175–180.
  27. O. Piguet, S.P. Sorella, Algebraic renormalization: Perturbative renormalization, symmetries and anomalies, Lect. Notes Phys. M 28 (1995) 1. [CrossRef]
  28. Z. Bern, S. Davies, T. Dennen, Yu-tin Huang, Absence of three-loop four-point divergences in N = 4 supergravity, Phys. Rev. Lett. 108 (2012) 201301, arXiv:1202.3423 [hep-th]. [CrossRef] [PubMed]
  29. P. Tourkine, P. Vanhove, An R4 non-renormalization theorem in N = 4 supergravity, Class. Quant. Grav. 29 (2012) 115006, arXiv:1202.3692 [hep-th]. [CrossRef]
  30. Z. Bern, S. Davies, T. Dennen, Yu-tin Huang, Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure, Phys. Rev. D 86 (2012) 105014, arXiv:1209.2472 [hep-th]. [CrossRef]
  31. Z. Bern, S. Davies, T. Dennen, Enhanced ultraviolet cancellations in N = 5 supergravity at four loops, Phys. Rev. D 90 (2014)105011, arXiv:1409.3089 [hep-th]. [CrossRef]
  32. Andrei Smilga, Ultraviolet divergences in non-renormalizale supersymmetric theories, arXiv:1603.06811 [hep-th].

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.