Open Access
Issue
EPJ Web Conf.
Volume 126, 2016
4th International Conference on New Frontiers in Physics
Article Number 02012
Number of page(s) 22
Section Plenary
DOI https://doi.org/10.1051/epjconf/201612602012
Published online 04 November 2016
  1. L. Gonzalez-Mestres, BICEP2, Planck, spinorial space-time, pre-Big Bang, invited talk at the 3rd International Conference on New Frontiers in Physics (ICNFP 2014), Kolymbari, Crete, Greece, August 23 - 30, 2014, EPJ Web of Conferences 95, 03014 (2015), and references therein. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Gonzalez-Mestres, Tests and prospects of new physics at very high energy, contribution the 3rd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 23 - 30, 2014, EPJ Web of Conferences 95, 05007 (2015), and references therein. [CrossRef] [EDP Sciences] [Google Scholar]
  3. BICEP2 Collaboration, Detection Of B-mode Polarization at Degree Angular Scales by BICEP2, Physical Review Letters 112, 241101 (2014). Original preprint version (March 2014): arXiv:1403.3985v1. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  4. BICEP2 Collaboration, BICEP2 II: Experiment and Three-Year Data Set, arXiv:1403.4302. [Google Scholar]
  5. Planck mission, European Space Agency, http://sci.esa.int/planck/ [Google Scholar]
  6. Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076. [Google Scholar]
  7. Planck Collaboration, Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082. [Google Scholar]
  8. A. Iljjas, P.J. Steinhardt and A. Loeb, Inflationary paradigm in trouble after Planck2013, arXiv:1402.6980, and references therein. [Google Scholar]
  9. A. Iljjas, P.J. Steinhardt and A. Loeb, Inflationary schism after Planck2013, Phys. Lett. B 723, 261 (2013), arXiv:1304.2785, and references therein. [Google Scholar]
  10. A.H. Guth, D.I. Kaiser and Y. Nomura, Inflationary paradigm after Planck 2013, arXiv:1312.7619, and references therein. [Google Scholar]
  11. A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526, and references therein. arXiv:1303.5082. [Google Scholar]
  12. A. Iljjas and P.J. Steinhardt, Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies, arXiv:1512.09010 [Google Scholar]
  13. A. Linde, A brief history of the multiverse, arXiv:1512.01203 [Google Scholar]
  14. See, for instance, ESA and Planck, Planck: gravitational waves remain elusive, http://sci.esa.int/planck/55362-planck-gravitational-waves-remain-elusive/ [Google Scholar]
  15. BICEP2/Keck and Planck Collaborations, A joint analysis of BICEP2/Keck Array and Planck data, arXiv:1502.00612. [Google Scholar]
  16. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (I), mp_arc 14-16, and references therein. [Google Scholar]
  17. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (II), mp_arc 14-60, and references therein. [Google Scholar]
  18. Complementary material is provided in our contribution to this conference Spinorial space-time and the origin of Quantum Mechanics, https://indico.cern.ch/event/344173/session/22/contribution/405 [Google Scholar]
  19. See also our contribution to this conference Spinorial space-time and Hagedorn-like temperatures, https://indico.cern.ch/event/344173/session/22/contribution/406 [Google Scholar]
  20. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv:astro-ph/9505117 [Google Scholar]
  21. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv:astro-ph/9601090. [CrossRef] [Google Scholar]
  22. Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, A&A, 571, A23 (2014), arXiv:1303.5083 and references therein. [Google Scholar]
  23. L. Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  24. See, for instance, The Kavli Foundation, A New Baby Picture of the Universe, http://www.kavlifoundation.org/science-spotlights/kicc-planck-universe [Google Scholar]
  25. See, for instance, the Planck Collaboration, Planck 2015 results. XVI. Isotropy and statistics of the CMB, arXiv:1506.07135 [Google Scholar]
  26. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026. [Google Scholar]
  27. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum. [CrossRef] [Google Scholar]
  28. See, in particular, our contributions to ICNFP 2012 and ICNFP 2013 [31, 32, 37, 38]. [Google Scholar]
  29. Together with the existence of a local privileged space direction for each comoving observer as predicted by the cosmic SST geometry, parity violation is a natural ingredient of the generation of such an observable effect [27, 28]. [Google Scholar]
  30. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  31. L. Gonzalez-Mestres, Pre-Big Bang, fundamental Physics and noncyclic cosmologies, International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00035 (2014), and references therein. Preprint at mp_arc 13–18. [CrossRef] [EDP Sciences] [Google Scholar]
  32. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 – September 5, 2013, EPJ Web of Conferences 71, 00063 (2014), references therein and Post Scriptum to the preprint hal-00983005. [CrossRef] [EDP Sciences] [Google Scholar]
  33. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 13-33, and references therein. [Google Scholar]
  34. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  35. A recent attempt to examine the current theoretical issues of the ΛCDM model is P. Bull et al., Beyond ΛCDM: Problems, solutions, and the road ahead, arXiv:1512.05356 . However, the patterns we consider here seem to lie beyond the scope of this paper. [Google Scholar]
  36. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070, and references therein. [Google Scholar]
  37. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00047 (2014), and references therein. Preprint at mp_arc 13–19. [CrossRef] [EDP Sciences] [Google Scholar]
  38. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00062 (2014), and Post Scriptum to the preprint mp_arc 14–31. [CrossRef] [EDP Sciences] [Google Scholar]
  39. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017. [Google Scholar]
  40. L. Gonzalez-Mestres, Absence of Greisen-Zatsepin-Kuzmin Cutoff and Stability of Unstable Particles at Very High Energy, as a Consequence of Lorentz Symmetry Violation, Proceedings of the 25th International Cosmic Ray Conference (held 30 July - 6 August, 1997 in Durban, South Africa), Edited by M. S. Potgieter, C. Raubenheimer, and D. J. van der Walt, Transvaal, South Africa: Potchefstroom University, 1997, Vol 6, http://adsabs.harvard.edu/full/1997ICRC....6..113G and arXiv:physics/9705031 (May 1997 preprint). [Google Scholar]
  41. L. Gonzalez-Mestres, Superluminal Particles and High-Energy Cosmic Rays, same ICRC97 Proceedings, http://adsabs.harvard.edu/full/1997ICRC....6..109G and arXiv:physics/9705032. [Google Scholar]
  42. L. Gonzalez-Mestres, Testing fundamental principles with high-energy cosmic rays, HEP Europhysics Conference, Grenoble, July 2011, PoS EPS-HEP2011 390, and references therein. [Google Scholar]
  43. Nobel Foundation, press release The Nobel Prize in Physics 2008. Yoichiro Nambu, Makoto Kobayashi, Toshihide Maskawa, http://www.nobelprize.org/nobel_prizes/physics/laureates/2008/ [Google Scholar]
  44. Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity Phys. Rev. 117, 648 (1960). Available, for instance, at the address http://www.mat.unimi.it/users/gaeta/SD2/risorse/nambu.pdf (Università degli Studi di Milano) [Google Scholar]
  45. Y. Nambu, A ‘Superconductor’ Model of Elementary Particles and Its Consequences, Proceedings of the Midwest Conference on Theoretical Physics, eds. F.J. Belinfante, S.G. Gartenhaus and R.W. King, Purdue University, Lafayette, Indiana, April 1-2, 1960. Online in Google Books: T. Eguchi and K. Nishijima, Broken Symmetry: Selected Papers of Y Nambu, World Scientific 1995. [Google Scholar]
  46. See also Y.Nambu, Spontaneous Symmetry Breakingin Particle Physics: a Case of Cross-Fertilization, 2008 Nobel Lecture, https://www.nobelprize.org/nobel_prizes/physics/laureates/2008/nambu_lecture.pdf. [Google Scholar]
  47. Y. Nambu, Axial vector current conservation in weak interactions, Phys. Rev. Lett. 4, 381 (1960), available at the Princeton University address http://puhep1.princeton.edu/kirkmcd/examples/EP/nambu_prl_4_380_60.pdf [CrossRef] [Google Scholar]
  48. J. Goldstone, Field theories with “Superconductor” solutions, Nuovo Cimento 19, 154 (1961). CERN preprint CM-P00057225 (August 1960) http://cds.cern.ch/record/343400/files/CMP00057225.pdf [Google Scholar]
  49. Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I, Phys. Rev. 122, 345 (1961). Online in Google Books: C.H. Lai, Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific 1981. [NASA ADS] [CrossRef] [Google Scholar]
  50. Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II, Phys. Rev. 124, 246 (1961). Available at the address http://cosmology.princeton.edu/∼mcdonald/examples/EP/nambu_pr_124_246_61.pdf (Princeton University). [NASA ADS] [CrossRef] [Google Scholar]
  51. A list of publications of Yoichiro Nambu can be found at the address http://ptps.oxfordjournals.org/content/86/iii.full.pdf+html (Progress of Theoretical Physics Supplements). [Google Scholar]
  52. See, for instance, P. Frampton, Pre-String Theory, arXiv:1508.06382. [Google Scholar]
  53. Y. Nambu, Duality and hydrodynamics, Lectures at the Copenhagen Summer Symposium (1970). [Google Scholar]
  54. T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance, Prog. Theor. Phys. 46, 1560 (1971). Available at the address http://ptp.oxfordjournals.org/content/46/5/1560.full.pdf [CrossRef] [Google Scholar]
  55. See, for instance, A. Lazanu and E. Shellard, Constraints on the Nambu-Goto cosmic string contribution to the CMB power spectrum in light of new temperature and polarisation data, JCAP 1502, 024 (2015), arXiv:1410.5046. [Google Scholar]
  56. Y. Nambu, Strings, monopoles, and gauge fields, Phys. Rev. D 10, 4262, 1974. [CrossRef] [Google Scholar]
  57. See, for instance, G. Ripka, Dual superconductor models of color confinement, Lectures delivered at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas, 2002-2003, ECT, Trento, arXiv:hep-ph/0310102. [Google Scholar]
  58. See, for instance, I. Kulik, Nonlinear waves and solitons in superconductors near critical temperature, Physica B + C 107, 169 (1981). [CrossRef] [Google Scholar]
  59. An example of more recent work is J. Garaud, J. Carlstrom and E. Babaev, Topological solitons in three-band superconductors with broken time reversal symmetry, Phys. Rev. Lett. 107, 197001 (2011), arXiv:1107.0995. [Google Scholar]
  60. See, for instance, M. Tylutki et al., Dark-Bright Solitons in a Superfluid Bose-Fermi Mixture, arXiv:1601.01471. [Google Scholar]
  61. See, for instancen S. Kivelson, D. Rokhsar and J. Sethna, Topology of the resonating valencebond state: Solitons and high-Tc superconductivity, Phys. Rev. B 35, 8865 (1987) [CrossRef] [Google Scholar]
  62. For a recent paper : A. Diens et al. Optical excitation of Josephson plasma solitons ina cuprate superconductor, Nature Materials 12, 535 (2013), available at the address https://www.researchgate.net/publication/236076175 (Research Gate) [Google Scholar]
  63. BICEP2 Collaboration, BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales, arXiv:1403.3985v1 [Google Scholar]
  64. BICEP2 Collaboration, BICEP2 II: Experiment and Three-Year Data Set, arXiv:1403.4302v1 [Google Scholar]
  65. Wilkinson Microwave Anisotropy Probe, http://map.gsfc.nasa.gov/ [Google Scholar]
  66. G. Bogdanoff, Fluctuations quantiques de la signature de la métrique à l’échelle de Planck, Thesis, Université de Bourgogne 1999, and related published papers. [Google Scholar]
  67. I. Bogdanoff, Etat topologique de l’espace-temps à l’échelle 0, Thesis, Université de Bourgogne 2002, and related published papers. [Google Scholar]
  68. LIGO Scientific Collaboration, http://www.ligo.org/ [Google Scholar]
  69. The LIGO Scientific Collaboration, the VIRGO Collaboration, An all-sky search for long-duration gravitational wave transients with LIGO, arXiv:1511.04398. [Google Scholar]
  70. D. Castelvecchi, Has giant LIGO experiment seen gravitational waves?, Nature News 30 september 2015, http://www.nature.com/news/has-giant-ligo-experiment-seen-gravitationalwaves-1.18449 [Google Scholar]
  71. H. Poincaré, Sur la dynamique de l’électron, Comptes rendus de l’Académie des Sciences 140, 1504 (1905), http://smf4.emath.fr/Publications/Gazette/2005/104/smf_gazette_104_60-70.pdf [Google Scholar]
  72. A. Einstein, Geometrie und erfahrung, Preus. Akad. der Wissench., Sitzungsberichte, part I, p. 123 (1921), http://www.philoscience.unibe.ch/documents/kursarchiv/WS99/Geometrie.pdf. English translation Geometry and experience in Sidelights on relativity, Methuen, London 1922, http://www.gutenberg.org/files/7333/7333-h/7333-h.htm [Google Scholar]
  73. The BICEP and Keck Array CMB Experiments, http://bicepkeck.org/ [Google Scholar]
  74. Caltech Observational Cosmology Group, BICEP: Robinson Gravitational Wave Background Telescope, http://bicep.caltech.edu/public/ [Google Scholar]
  75. K.W. Yoon et al., The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, Vol. 6275 (2006), arXiv:astro-ph/0606278. [Google Scholar]
  76. BICEP1 Collaboration, Degree-Scale CMB Polarization Measurements from Three Years of BICEP1 Data, ApJ 783, 67 (2014), arXiv:1310.1422. [NASA ADS] [CrossRef] [Google Scholar]
  77. C.L. Kuo et al., Antenna-coupled TES bolometer arrays for CMB polarimetry, in SPIE Proceedings Vol. 7020, Marseille, 2008, arXiv:0908.1464. [Google Scholar]
  78. A. Orlando et al., Antenna-coupled TES Bolometer Arrays for BICEP2/Keck and SPIDER, in SPIE Proceedings Vol. 7741, San Diego, 2010, arXiv:1009.3685. [Google Scholar]
  79. C.L. Kuo et al., Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1, arXiv:1208.1247. See also http://www.cfa.harvard.edu/CMB/bicep2/ and http://www.cfa.harvard.edu/CMB/keckarray/ [Google Scholar]
  80. J.A. Brevik et al., Initial performance of the BICEP2 antenna-coupled superconducting bolometers at the South Pole, in SPIE Proceedings Vol. 7741, San Diego, 2010, http://authors.library.caltech.edu/22834/1/Brevik2010p12867Adaptive_Optics_Systems_Pts_1-3.pdf [Google Scholar]
  81. Jet Propulsion Laboratory, California Institute of Technology, TES Bolometers Enable a New Probe of the Infant Universe, http://microdevices.jpl.nasa.gov/capabilities/superconductingdevices/tes-bolometers.php [Google Scholar]
  82. C.D. Sheehy et al., The Keck Array: a pulse tube cooled CMB polarimeter, arXiv:1104.5516. [Google Scholar]
  83. S. Kernasovskiy et al., Optimization and sensitivity of the Keck Array, arXiv:1208.0857. [Google Scholar]
  84. P. Ade et al., Antenna-coupled TES bolometers used in BICEP2, Keck array, and SPIDER, arXiv:1502.00619. [Google Scholar]
  85. The BICEP2, Keck Array Collaborations, BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array, arXiv:1502.00643. [Google Scholar]
  86. The BICEP2, Keck Array Collaborations, BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Array, arXiv:1510.09217. [Google Scholar]
  87. Z. Ahmed et al., BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization, arXiv:1407.5928. [Google Scholar]
  88. W.L.K. Wu et al., Initial Performance of BICEP3: A Degree Angular Scale 95 GHz Band Polarimeter, arXiv:1601.00125. [Google Scholar]
  89. B.A. Benson et al., A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope, arXiv:1407.2973. [Google Scholar]
  90. See, for instance, http://kicp.uchicago.edu/∼bbenson/detectors.html (Bradford Benson, University of Chicago). [Google Scholar]
  91. POLAR CMB Polarization Experiment, http://polar-array.stanford.edu/ (Stanford University). See also Chao Lin-Kuo transparencies at the 2009 Meeting of the SLAC Users Organization. [Google Scholar]
  92. R. O’Brient et al., Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1, arXiv:1208.1247. [Google Scholar]
  93. The POLARBEAR Collaboration, A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR, Astrophysical Journal 794, 171 (2014), arXiv:1403.2369. [NASA ADS] [CrossRef] [Google Scholar]
  94. Z. Kermish et al., The POLARBEAR Experiment, arXiv:1210.7768. [Google Scholar]
  95. BarronD. et al., Development and characterization of the readout system for POLARBEAR-2, arXiv:1410.7488. [Google Scholar]
  96. The POLARBEAR Collaboration, POLARBEAR Constraints on Cosmic Birefringence and Primordial Magnetic Fields, arXiv:1509.02461. [Google Scholar]
  97. J.E. Austermann et al., SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope, arXiv:1210.4970. [Google Scholar]
  98. K.T. Story et al., A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data, arXiv:1412.4760. [Google Scholar]
  99. R. Keisler, Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data, arXiv:1503.02315. [Google Scholar]
  100. Atacama Cosmology Telescope (ACT), http://lambda.gsfc.nasa.gov/product/act/ (NASA) and http://www.princeton.edu/act/ (Princeton University). [Google Scholar]
  101. M.D. Niemack et al., ACTPol: A polarization-sensitive receiver for the Atacama Cosmology Telescope, in SPIE Proceedings Vol. 7741, San Diego, 2010, arXiv:1006.5049. [Google Scholar]
  102. R. Datta et al., Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope, arXiv:1510.07797. [Google Scholar]
  103. A. van Engelen, The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation, arXiv:1412.0626. [Google Scholar]
  104. T. Su et al., On the redshift distribution and physical properties of DSFGs from ACT, arXiv:1511.06770. [Google Scholar]
  105. C. Sifon et al., The Atacama Cosmology Telescope: Dynamical masses for 44 SZ-selected galaxy clusters over 755 square degree, arXiv:1512.00910. [Google Scholar]
  106. J.W. Appel et al., The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters, arXiv:1408.4789. [Google Scholar]
  107. K. Rostem et al., Scalable background-limited polarization-sensitive detectors for mm-wave applications, arXiv:1408.4790. [Google Scholar]
  108. D.T. Chuss et al., Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development, arXiv:1511.04414. [Google Scholar]
  109. J.P. Filippini et al., SPIDER: a balloon-borne CMB polarimeter for large angular scales, arXiv:1106.2158. [Google Scholar]
  110. A.S. Rahlin et al., Pre-flight integration and characterization of the SPIDER balloon-borne telescope, arXiv:1407.2906. [Google Scholar]
  111. J. Gudmundsson et al., The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryosta arXiv:1506.06953. [Google Scholar]
  112. S. Bryan et al., A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument, arXiv:1510.01771. [Google Scholar]
  113. R. Misawa et al., PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium, arXiv:1410.5760. [Google Scholar]
  114. The PILOT project, http://pilot.irap.omp.eu/ [Google Scholar]
  115. A. Faessler, Beta decay and the cosmic neutrino background, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences, 71, 00044 (2014). [CrossRef] [EDP Sciences] [Google Scholar]
  116. KATRIN, https://www.katrin.kit.edu/ [Google Scholar]
  117. See, for instance, R.G. Hamish Robertson, KATRIN: an experiment to determine the neutrino mass from the beta decay of tritium, arXiv:1307.5486. [Google Scholar]
  118. A. Faessler at al., Search for the Cosmic Neutrino Background, 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure: Achievements of the past two decades, Ischia May 2014, Journal of Physics: Conference Series 580 (2015) 012040 [CrossRef] [Google Scholar]
  119. S. Betts et al. Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield, arXiv:1307.4738 [Google Scholar]
  120. J. Greenwald, PPPL, Princeton launch hunt for Big Bang particles, DOE Pulse 430, January 12, 2015, http://web.ornl.gov/info/news/pulse/no430/story1.shtml [Google Scholar]
  121. A. Cocco, G. Mangano and M. Messina, Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei, Journal of Physics: Conference Series 110 (2008) 082014. [CrossRef] [Google Scholar]
  122. A. Ringwald, Prospects for the direct detection of the cosmic neutrino background, arXiv:0901.1529 [Google Scholar]
  123. A. Cocco, G. Mangano and M. Messina, Low energy antineutrino detection using neutrino capture on electron capture decaying nuclei, Phys. Rev. D 79, 053009 (2009) arXiv:0903.1217. [CrossRef] [Google Scholar]
  124. See also Yu-Feng Li, Detection Prospects of the Cosmic Neutrino Background, International Journal of Modern Physics bf A 30, 1530031 2015), arXiv:1504.03966, and references therein. [Google Scholar]
  125. Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062. [Google Scholar]
  126. Planck Collaboration, Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114. [Google Scholar]
  127. Planck Collaboration, Planck 2015 results. XVI. Isotropy and statistics of the CMB arXiv:1506.07135. [Google Scholar]
  128. H.K. Eriksen et al., Asymmetries in the CMB anisotropy field, Astrophys.J. 605, 14 (2004) [NASA ADS] [CrossRef] [Google Scholar]
  129. and Erratum ibid. 609, 1198 (2004), arXiv:astro-ph/0307507. [Google Scholar]
  130. F. K. Hansen, A. J. Banday and K. M. Gorski, Testing the cosmological principle of isotropy: local power spectrum estimates of the WMAP data, Mon. Not. Roy. Astron. Soc. 354, 641 (2004), arXiv:astro-ph/0404206. [NASA ADS] [CrossRef] [Google Scholar]
  131. C.-G. Park, Non-Gaussian Signatures in the Temperature Fluctuation Observed by the Wilkinson Microwave Anisotropy Probe, Mon. Not. Roy. Astron. Soc. 349, 313 (2004), arXiv:astro-ph/0307469. [NASA ADS] [CrossRef] [Google Scholar]
  132. Planck mission (ESA), Planck publications, http://www.cosmos.esa.int/web/planck/publications [Google Scholar]
  133. Planck Collaboration, Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582. [Google Scholar]
  134. Planck 2015 release. Explanatory supplement, http://wiki.cosmos.esa.int/planckpla2015/ [Google Scholar]
  135. Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589. [Google Scholar]
  136. Planck Collaboration, Planck 2013 results. XXXI. Consistency of the Planck data, arXiv:1508.03375. [Google Scholar]
  137. The Kavli Institute for Cosmology (KICC, Cambridge, UK), Planck, http://www.kicc.cam.ac.uk/research/cosmic-microwave-background/planck [Google Scholar]
  138. See, for instance, the Planck Collaboration, Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, arXiv:1507.02704 [Google Scholar]
  139. ESA-Planck News, Planck reveals an almost perfect Universe, 21 March 2013 release. [Google Scholar]
  140. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Proceedings of the Invisible Universe International Conference (Paris 2009), AIP Conf. Proc. 1241 (2010),120. The arXiv.org version arXiv:0912.0725 contains a relevant Post Scriptum. [Google Scholar]
  141. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 479, and references therein. [Google Scholar]
  142. Euclid Consortium, http://www.euclid-ec.org/ [Google Scholar]
  143. R. Laureijs et al., Euclid Definition Study Report, arXiv:1110.3193. [Google Scholar]
  144. Dark Energy Spectroscopic Instrument (DESI), http://desi.lbl.gov/ [Google Scholar]
  145. M. Levi et al. for the DESI Collaboration, The DESI Experiment, a whitepaper for Snowmass 2013, arXiv:1308.0847. [Google Scholar]
  146. See also K.N. Abazajian et al., Inflation Physics from the Cosmic Microwave Background and Large Scale Structure, Report from the “Dark Energy and CMB” working group for the American Physical Society’s Division of Particles and Fields, Snowmass 2013, arXiv:1309.5381. [Google Scholar]
  147. K. Lundmark, Curvature of Space-Time in de Sitter′s World, MNRAS 84 (1924), 747, http://articles.adsabs.harvard.edu/full/1924MNRAS..84..747L [Google Scholar]
  148. G. Lemaître, Un Univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Ann. Soc. Sci. Brux. A 47 (1927), 49, http://articles.adsabs.harvard.edu/full/1927ASSB...47...49L [Google Scholar]
  149. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, PNAS 15 (1929), 168, http://www.pnas.org/content/15/3/168 [Google Scholar]
  150. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146. [Google Scholar]
  151. L. Gonzalez-Mestres, WMAP, Planck, cosmic rays and unconventional cosmologies, contribution to the Planck 2011 Conference, Paris, January 2011, arXiv:1110.6171. [Google Scholar]
  152. The Gaia mission, http://www.cosmos.esa.int/web/gaia/home [Google Scholar]
  153. C. Cacciani, E. Pancino and M. Bellazini, Gaia, to appear in Astronomische Nachrichten, special issue Reconstructing the Milky Way’s History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models, Guest Editors C. Chiappini, J. Montalban, and M. Steffen, arXiv:1512.03658. [Google Scholar]
  154. L. Wyrzykowski, First year of the Gaia Science Alerts, XXXVII Meeting of the Polish Astronomical Society, arXiv:1601.02827. [Google Scholar]
  155. Gaia Science Alerts Working Group, https://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki/ [Google Scholar]
  156. R.C. Smith, Cataclysmic Variables, arXiv:astro-ph/0701654. [Google Scholar]
  157. G. Lemaître, The Beginning of the World from the Point of View of Quantum Theory, Nature 127, 706 (1931). [Google Scholar]
  158. See, for instance, M. Gasperini and G. Veneziano, in Beyond the Big Bang : Competing Scenarios for an Eternal Universe, Ed. R. Vaas, Springer-Verlag 2007, arXiv:hep-th/0703055. [Google Scholar]
  159. M. Gasperini, String theory and primordial cosmology, arXiv:1402.0101. [Google Scholar]
  160. See, for instance, P. Aurenche and L. Gonzalez-Mestres, Glueball singularity, flavor loops and the Harari-Freund picture, Zeitschrift für Physik C 1, 307 (1979), CERN preprint TH.2568, and references therein. [Google Scholar]
  161. A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), 844. [Google Scholar]
  162. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik 354(7) (1916), 769. [NASA ADS] [CrossRef] [Google Scholar]
  163. See, for instance, M. Trodden and S.M. Carroll, TASI lectures: Introduction to Cosmology, arXiv:astro-ph/0401547. [Google Scholar]
  164. K. Gödel, Über formal unentscheidbare Sätze der “Principia Mathematica” und verwandter Systeme, Monatshefte für Mathematik und Physik 38, 173 (1931), available at the addess http://www.w-k-essler.de/pdfs/goedel.pdf (Goethe Universität, Frankfurt am Main). [Google Scholar]
  165. See, for instance, Paul J. Cohen, Set theory and the continuum hypothesis (1966), Dover Books in Mathematics 2008. [Google Scholar]
  166. D. Castelvecchi, Paradox at the heart of mathematics makes physics problem unanswerable, Nature 528, 207 (2015), http://www.nature.com/nature/journal/v528/n7581/full/nature16059.htm [CrossRef] [PubMed] [Google Scholar]
  167. T. Cubitt, D. Perez-Garcia and M. Wolff, Undecidability of the spectral gap, Nature News, 9 December 2015, http://www.nature.com/news/paradox-at-the-heart-of-mathematics-makes-physics-problem-unanswerable-1.18983, and references therein. [Google Scholar]
  168. The Pierre Auger Collaboration, https://www.auger.org/ [Google Scholar]
  169. The Telescope Array Collaboration, http://www.telescopearray.org/ [Google Scholar]
  170. Pierre Auger Collaboration, The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015) 1509.03732. [Google Scholar]
  171. The Telescope Array Collaboration, The Energy Spectrum of Cosmic Rays above 1017.2 eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years, 1511.07510. [Google Scholar]
  172. I. Valiño, The flux of ultra-high energy cosmic rays after ten years of operation of the Pierre Auger Observatory, in [169], p.9. [Google Scholar]
  173. R. Engel, Upgrade of the Pierre Auger Observatory, in [169], p. 136. [Google Scholar]
  174. The Pierre Auger Collaboration, Hightlights from the Pierre Auger Observatory, contribution to the ICRC 2013 Conference, arXiv:1310.4620, and references therein. [Google Scholar]
  175. The Pierre Auger Observatory, Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013), arXiv:1307.5059, and references therein. [Google Scholar]
  176. K. Greisen, End of the cosmic-ray spectrum?, Phys. Rev. Lett. 16, 748 (1966). Available at the address http://physics.princeton.edu/∼mcdonald/examples/EP/greisen_−prl_−16_−748_−66.pdf (Princeton University). [NASA ADS] [CrossRef] [Google Scholar]
  177. G.T. Zatsepin and V.A. Kuz’min, Upper Limit of the Spectrum of Cosmic Rays, JETP Letters 4, 78 (1966 for the original version), http://www.jetpletters.ac.ru/ps/1624/article_−24846.shtml [Google Scholar]
  178. The Telescope Array Collaboration, Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern S L. Gonzalez-Mestres, ky Measured with the Surface Detector of the Telescope Array Experiment, arXiv:1404.5890. [Google Scholar]
  179. L. Gonzalez-Mestres, Deformed Lorentz Symmetry and High-Energy Astrophysics (I), talk given at the ICRC 1999 Conference, Utah August 17-25, 1999, arXiv:physics/0003080. [Google Scholar]
  180. L. Gonzalez-Mestres, Gamma and Cosmic-Ray Tests of Special Relativity, International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, June 26-30, 2000, arXiv:astro-ph/0011181. [Google Scholar]
  181. L. Gonzalez-Mestres, Lorentz Symmetry Violation and Acceleration in Relativistic Shocks, arXiv:astro-ph/0011182. [Google Scholar]
  182. L. Gonzalez-Mestres, Superluminal Matter and High-Energy Cosmic Rays, arXiv:astroph/9606054, and references therein. [Google Scholar]
  183. The ZEUS Collaboration, Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA, Phys.Lett. B 591 23 (2004), arXiv:hep-ex/0401009. [Google Scholar]
  184. See, for instance, the ACME Collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343, 269 (2014) arXiv:1310.7534, and subsequent talks by Gerald Gabrielse: http://pavi14.syr.edu/Talks/Monday/Gabrielse.pdf [Google Scholar]
  185. C. Carlson, The Proton Radius Puzzle, arXiv:1502.05314. [Google Scholar]
  186. See, for instance, L. Cazon, for the Pierre Auger Collaboration, Hadronic physics with the Pierre Auger Observatory, Proceedings of CRIS2015 (Cosmic Ray International Seminar 2015), arXiv:1512.02923. [Google Scholar]
  187. Extreme Universe Space Observatory in the Japanese Experiment Module (JEM-EUSO), http://jemeuso.riken.jp [Google Scholar]
  188. A. Haungs, JTM-EUSO Collaboration, Physics Goals and Status of JEM-EUSO and its Test Experiments, arXiv:1504.02593. [Google Scholar]
  189. The JEM-EUSO Collaboration, The JEM-EUSO Mission: Contributions to the ICRC 2013 arXiv:1307.7071. [Google Scholar]
  190. K. Ulmer (CMS and ATLAS collaborations), Supersymmetry: Experimental Status, arXiv:1601.03774. [Google Scholar]
  191. The CMS Collaboration, CMS Physics Analysis Summary, 18 December 2015, https://cds.cern.ch/record/2114808/files/EXO-15-004-pas.pdf [Google Scholar]
  192. The ATLAS Collaboration, ATLAS-CONF-2015-081, 15 December 2015, http://cds.cern.ch/record/2114853/files/ATLAS-CONF-2015-081.pdf [Google Scholar]
  193. The CMS Collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions ats = 8 TeV, Phys. Lett. B 750, 494 (2015), arXiv:1506.02301. [CrossRef] [Google Scholar]
  194. The ATLAS Collaboration Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions ats = 8 TeV with the ATLAS detector, JHEP 12, 55 (2015), arXiv:1506.00962. [Google Scholar]
  195. A CERN collaboration devoted to the experimental study of the quark-gluon plasma using a dedicated heavy-ion detector is ALICE, http://alice-collaboration.web.cern.ch/ [Google Scholar]
  196. At the Relativistic Heavy Ion Collider (RHIC, Brookhaven), the STAR Collaboration, https://www.star.bnl.gov/, has also as primary physics task the study of the quark-gluon plasma. [Google Scholar]
  197. Such a search would concern, in particular, small-mass and massless superbradyons (to avoid a too large rest energy) as well as superluminal particles with a critical speed not too far from c. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.