Open Access
Issue
EPJ Web Conf.
Volume 126, 2016
4th International Conference on New Frontiers in Physics
Article Number 02032
Number of page(s) 9
Section Plenary
DOI https://doi.org/10.1051/epjconf/201612602032
Published online 04 November 2016
  1. R. Hagedorn, “Statistical thermodynamics of strong interactions at high-energies”, Nuovo Cim. Suppl. 3 (1965) 147. [Google Scholar]
  2. G. ‘t Hooft, “Dimensional reduction in quantum gravity”, Salamfest, (1993) 0284. [Google Scholar]
  3. G. ‘t Hooft, “On the Quantum Structure of a Black Hole”, Nucl. Phys. B 256 (1985) 727. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Susskind, L. Thorlacius, and J. Uglum, “The Stretched horizon and black hole complementarity” Phys.Rev. D 48 (1993) 3743 [Google Scholar]
  5. L. Susskind, “Strings, black holes and Lorentz contraction”, Phys. Rev. D 49 (1994) 6606, arXiv:hep-th/9308139. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. G. Mertens, H. Verschelde, and V. I. Zakharov, “The long string at the stretched horizon and the entropy of large non-extremal black holes”, JHEP 1602 (2016) 041, arXiv:1505.04025 [hep-th]. [CrossRef] [Google Scholar]
  7. L. Susskind and J. Lindsay, “An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe”, (2004), World Scientific publishing company. [CrossRef] [Google Scholar]
  8. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes: Complementarity or Firewalls?”, JHEP 1302 (2013) 062 [arXiv:1207.3123 [hep-th]]. [CrossRef] [Google Scholar]
  9. T. Damour, “Black Hole Eddy Currents”, Phys. Rev. D 18 (1978) 3598. [CrossRef] [Google Scholar]
  10. M. Parikh and F. Wilczek, “An Action for black hole membranes”, Phys.Rev. D 58 (1998) 064011. [CrossRef] [Google Scholar]
  11. G. T. Horowitz and J. Polchinski, “Selfgravitating fundamental strings”, Phys.Rev. D 57 (1998) 2557, arXiv:hep-th/9707170. [CrossRef] [Google Scholar]
  12. T. G. Mertens, H. Verschelde, and V. I. Zakharov, “Near-Hagedorn Thermodynamics and Random Walks: a General Formalism in Curved Backgrounds”, JHEP 1402 (2014) 127, arXiv:1305.7443 [hep-th] [CrossRef] [Google Scholar]
  13. “Random Walks in Rindler Spacetime and String Theory at the Tip of the Cigar”, JHEP 1403 (2014) 086, arXiv:1307.3491 [hep-th]. [Google Scholar]
  14. B. Sathiapalan, “Vortices on the StringWorld Sheet and Constraints on Toral Compactification”, Phys. Rev. D 35 (1987) 3277 [CrossRef] [Google Scholar]
  15. Ya. I. Kogan, “Vortices on the World Sheet and String’s Critical Dynamics”, JETP Lett. 45 (1987) 709. [Google Scholar]
  16. J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees of Freedom of String Theory”, Nucl. Phys. B310 (1988) 291. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Kruczenski and A. Lawrence, “Random walks and the Hagedorn transition”, JHEP 0607 (2006) 031, arXiv:hep-th/0508148. [CrossRef] [Google Scholar]
  18. A. Giveon and N. Itzhaki, “String theory at the tip of the cigar”, JHEP 1309 (2013) 079, arXiv:1305.4799 [hep-th] [CrossRef] [Google Scholar]
  19. T. G. Mertens, H. Verschelde, and V. I. Zakharov, “Perturbative String Thermodynamics near Black Hole Horizons”, JHEP 1506 (2015) 167, arXiv:1410.8009 [hep-th]. [CrossRef] [Google Scholar]
  20. T. G. Mertens, H. Verschelde, and V. I. Zakharov. “On the Relevance of the Thermal Scalar”, JHEP 1411 (2014) 157, arXiv:1408.7012 [hep-th]. [CrossRef] [Google Scholar]
  21. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38 (1999) 1113, arXiv:hep-th/9711200 [CrossRef] [MathSciNet] [Google Scholar]
  22. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity”, Phys. Rept. 323 (2000) 183, arXiv:hep-th/9905111. [CrossRef] [MathSciNet] [Google Scholar]
  23. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys. 2 (1998) 505, arXiv:hep-th/9803131. [CrossRef] [MathSciNet] [Google Scholar]
  24. T. Sakai and Sh. Sugimoto, “Low energy hadron physics in holographic QCD”, Prog. Theor. Phys. 113 (2005) 843, arXiv:hep-th/0412141. [CrossRef] [Google Scholar]
  25. O. Bergman and G. Lifschytz, “Holographic U(1)A and string creation”, JHEP 0704 (2007), 043, arXiv:hep-th/0612289. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.