Open Access
Issue
EPJ Web Conf.
Volume 126, 2016
4th International Conference on New Frontiers in Physics
Article Number 03005
Number of page(s) 14
Section Special session celebrating the 50th anniversary of Hagedorn's Statistical Bootstrap Model
DOI https://doi.org/10.1051/epjconf/201612603005
Published online 04 November 2016
  1. R. Hagedorn, “Statistical thermodynamics of strong interactions at high-energies,” Nuovo Cim. Suppl. 3 147 (1965).
  2. R. Hagedorn, in: Proceedings, Summer School on Theoretical Physics, Cargèse Lectures in Physics: Cargese, France, September 1971 “Thermodynamics of strong interactions,” Cargese Lect. Phys. 6, 643 (1973)
  3. E. Schatzman (ed.) 731 pages, New York: Gordon and Breach (1973)
  4. R. Hagedorn, “Boiling Primordial Matter: 1968,” Published as “Siedende Urmaterie” in Verhandlungen der Schweizerischen Naturforschenden Gesellschaft; 148 (1968) pp 51–63. Republished translated in Ref. [4], pp 125–138, Chapter 16, doi:10.1007/978-3-319-17545-4_16
  5. J. Rafelski, Editor, “Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN: With a Tribute to Rolf Hagedorn,” doi:10.1007/978-3-319-17545-4 Springer Open, Heidelberg, New York (2016)
  6. M. J. Fromerth and J. Rafelski, “Hadronization of the quark Universe,” http://arxiv.org/abs/astro-ph/0211346 astro-ph/0211346.
  7. M. J. Fromerth, I. Kuznetsova, L. Labun, J. Letessier and J. Rafelski, “From Quark-Gluon Universe to Neutrino Decoupling,” Acta Phys. Polon. B 43, no. 12, 2261 (2012) doi:10.5506/APhysPolB.43.2261 [arXiv:1211.4297 [nucl-th]]. [CrossRef]
  8. J. Rafelski, “Connecting QGP-Heavy Ion Physics to the Early Universe,” Nucl. Phys. Proc. Suppl. 243-244, 155 (2013) doi:10.1016/j.nuclphysbps.2013.09.017 [arXiv:1306.2471 [astro-ph.CO]]. [CrossRef]
  9. J. Rafelski and J. Birrell, “Traveling Through the Universe: Back in Time to the Quark-Gluon Plasma Era,” J. Phys. Conf. Ser. 509, 012014 (2014) doi:10.1088/1742-6596/509/1/012014 [arXiv:1311.0075 [nucl-th]].
  10. J. Rafelski, “Melting Hadrons, Boiling Quarks,” Eur. Phys. J. A 51 114 (2015) doi:10.1007/978-3-319-17545-4_33, 10.1140/epja/i2015-15114-0 [CrossRef] [EDP Sciences]
  11. R. Hagedorn, “How We Got to QCD Matter from the Hadron Side: 1984,” Lect. Notes Phys. 221 53 (1985), reprinted in Chapter 25 of [4] doi:10.1007/978-3-319-17545-4_25
  12. S. Borsanyi, “Thermodynamics of the QCD transition from lattice,” Nucl. Phys. A 904-905, 270c (2013) doi:10.1016/j.nuclphysa.2013.01.072 [arXiv:1210.6901 [hep-lat]].
  13. S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and K. K. Szabo, “Full result for the QCD equation of state with 2+1 flavors,” Phys. Lett. B 730, 99 (2014) doi:10.1016/j.physletb.2014.01.007 [arXiv:1309.5258 [hep-lat]].
  14. M. Strickland, private communication.
  15. P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571, A16 (2014) doi:10.1051/0004-6361/201321591 [arXiv:1303.5076 [astro-ph.CO]].
  16. J. Birrell and J. Rafelski, “Quark–gluon plasma as the possible source of cosmological dark radiation,” Phys. Lett. B 741, 77 (2015) doi:10.1016/j.physletb.2014.12.033 [arXiv:1404.6005 [nuclth]].
  17. L. A. Anchordoqui and H. Goldberg, “Neutrino cosmology after WMAP 7-Year data and LHC first Z’ bounds,” Phys. Rev. Lett. 108 081805 (2012) doi:10.1103/PhysRevLett.108.081805 [arXiv:1111.7264 [hep-ph]]. [CrossRef] [PubMed]
  18. L. A. Anchordoqui, H. Goldberg and G. Steigman, “Right-Handed Neutrinos as the Dark Radiation: Status and Forecasts for the LHC,” Phys. Lett. B 718, 1162 (2013) doi:10.1016/j.physletb.2012.12.019 [arXiv:1211.0186 [hep-ph]].
  19. S. Weinberg, “Goldstone bosons as Fractional Cosmic Neutrinos,” Phys. Rev. Lett. 110, no. 24, 241301 (2013) doi:10.1103/PhysRevLett.110.241301 [arXiv:1305.1971 [astro-ph.CO]]. [NASA ADS] [CrossRef] [PubMed]
  20. J. Birrell, J. Wilkening and J. Rafelski, J. Comput. Phys. 281, 896 (2014) doi:10.1016/j.jcp.2014.10.056 [arXiv:1403.2019 [math.NA]].
  21. J. Birrell, C. T. Yang and J. Rafelski, “Relic Neutrino Freeze-out: Dependence on Natural Constants,” Nucl. Phys. B 890, 481 (2014) doi:10.1016/j.nuclphysb.2014.11.020 [arXiv:1406.1759 [nucl-th]].
  22. W. Altmannshofer, J. Brod and M. Schmaltz, “Experimental constraints on the coupling of the Higgs boson to electrons,” JHEP 1505, 125 (2015) doi:10.1007/JHEP05(2015)125 [arXiv:1503.04830 [hep-ph]]. [CrossRef]
  23. T. Han, Z. Liu, Z. Qian and J. Sayre, “Improving Higgs coupling measurements through ZZ Fusion at the ILC,” Phys. Rev. D 91, 113007 (2015) doi:10.1103/PhysRevD.91.113007 [arXiv:1504.01399 [hep-ph]]. [CrossRef]
  24. J. Birrell, C. T. Yang, P. Chen and J. Rafelski, “Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass,” Phys. Rev. D 89, 023008 (2014) doi:10.1103/PhysRevD.89.023008 [arXiv:1212.6943 [astro-ph.CO]]. [CrossRef]
  25. Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford Mathematical Monographs, OUP Oxford (2008) https://books.google.com/books?id=UjHbm5rfpi8C.
  26. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, “Relic neutrino decoupling including flavor oscillations,” Nucl. Phys. B 729, 221 (2005) doi:10.1016/j.nuclphysb.2005.09.041 [hep-ph/0506164].

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.