Open Access
EPJ Web Conf.
Volume 126, 2016
4th International Conference on New Frontiers in Physics
Article Number 04001
Number of page(s) 8
Section Parallel
Published online 04 November 2016
  1. ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214. [Google Scholar]
  2. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235. [Google Scholar]
  3. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004. [Google Scholar]
  4. [Google Scholar]
  5. CMS Collaboration, “A Cambridge-Aachen (C-A) Based Jet Algorithm For Boosted Top-Jet Tagging”, CMS Physics Analysis Summary CMS-PAS-JME-09-001, 2009. [Google Scholar]
  6. CMS Collaboration, “Boosted Top Jet Tagging at CMS”, CMS Physics Analysis Summary CMSPAS-JME-13-007, 2014. [Google Scholar]
  7. T. Plehn, M. Spannowsky, M. Takeuchi, and D. Zerwas, “Stop Reconstruction with Tagged Tops”, JHEP 10 (2010) 078, arXiv:1006.2833. [CrossRef] [Google Scholar]
  8. CMS Collaboration, “Search for pair production of excited top quarks in the lepton+jet final state”, JHEP 06 (2014) 125, arXiv:1311.5357. [Google Scholar]
  9. CMS Collaboration, “Search for pair production of resonances decaying to a top quark plus a jet in final states with two leptons”, CMS Physics Analysis Summary CMS-PAS-B2G-12-008, 2013. [Google Scholar]
  10. CMS Collaboration, “Search in two-dimensional mass space for T′T̄→W+′bW−′b̄ in the dilepton final state in proton-proton collisions at √s = 8 TeV”, CMS Physics Analysis Summary CMSPAS-B2G-12-025, 2015. [Google Scholar]
  11. CMS Collaboration, “Search for Monotop Signatures in proton-proton collisions at 8 Tev”, Phys. Rev. Lett. 114 (2015) 101801, hep-ex:1410.1149. [CrossRef] [PubMed] [Google Scholar]
  12. CMS Collaboration, “Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in pp collisions at √s = 8 TeV”, JHEP 06 (2015) 121, arXiv:1504.03198. [Google Scholar]
  13. CMS Collaboration, Search for resonant tt̄ production in proton-proton collisions at mathrms = 8 TeV”, CERN-PH-EP/2015-126, arXiv:1506:03062. [Google Scholar]
  14. CMS Collaboration, “Search for W′ → tb in the lepton+jets final state in pp collisions at √s = 8 TeV”, JHEP 05 (2014) 108, hep-ex:1402.2176. [Google Scholar]
  15. CMS Collaboration, “Search for W′ → tb in the all-hadronic final state”, CMS Physics Analysis Summary CMS-PAS-B2G-12-009, 2014. [Google Scholar]
  16. CMS Collaboration, “Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State”, Phys. Rev. Lett. 112 (2014) 171801, hep-ex:1212:2391. [CrossRef] [PubMed] [Google Scholar]
  17. CMS Collaboration, “Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at √s = 8 TeV”, Phys. Lett. B 729 (2014) 149, hep-ex:1311.7667. [Google Scholar]
  18. CMS Collaboration, “Search for pair-produced vector-like B quarks in proton-proton collisions at √s = 8 TeV”, CMS Physics Analysis Summary CMS-PAS-B2G-13-006, 2015, hepex:1507.07129. [Google Scholar]
  19. ATLAS Collaboration, “Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector”, JHEP 04 (2013) 075, arXiv:1210.4491. [Google Scholar]
  20. CMS Collaboration, “Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at √s = 8 TeV”, (2014), arXiv:1408.3583. [Google Scholar]
  21. ATLAS Collaboration, “Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at at √s = 7 TeV with the ATLAS detector”, Phys. Rev. Lett. 110, (2013), 011802, arXiv:1209.4625. [CrossRef] [PubMed] [Google Scholar]
  22. CMS Collaboration, “Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy”, Phys. Rev. Lett. 108, (2012), 261803, arXiv:1204.0821. [CrossRef] [PubMed] [Google Scholar]
  23. J. Andrea, B. Fuks, and F. Maltoni, “Monotops at the LHC”, Phys. Rev. D 84 (2011) 074025, arXiv:1106.6199. [CrossRef] [Google Scholar]
  24. J.-L. Agram et al., “Monotop phenomenology at the Large Hadron Collider”, Phys. Rev. D 89 (2014) 014028, arXiv:1311.6478. [CrossRef] [Google Scholar]
  25. M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037, arXiv:1002.4137. [CrossRef] [Google Scholar]
  26. K. Cheung, K. Mawatari, E. Senaha, P.-Y. Tseng and T.-C. Yuan, The top window for dark matter, JHEP 10 (2010) 081, arXiv:1009.0618. [CrossRef] [Google Scholar]
  27. T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510, arXiv:1303.6638. [Google Scholar]
  28. Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, “Stop the top background of the stop search”, JHEP 07 (2012) 110, arXiv:1203.4813. [CrossRef] [Google Scholar]
  29. R. M. Harris and S. Jain, “Cross sections for leptophobic topcolor Z’ decaying to top-antitop”, Eur. Phys. J. C 72 (2012) 2072, arXiv:1112.4928. [CrossRef] [EDP Sciences] [Google Scholar]
  30. K. R. Lynch, S. Mrenna, M. Narain, and E. H. Simmons, “Finding Z’ bosons coupled preferentially to the third family at CERN LEP and the Fermilab Tevatron”, Phys. Rev. D 63 (2001) 035006, arXiv:hep-ph/0007286. [CrossRef] [Google Scholar]
  31. K. Agashe et al., “LHC signals from warped extra dimensions”, Phys. Rev. D 77 (2008) 015003, arXiv:hep-ph/0612015. [CrossRef] [Google Scholar]
  32. H. Georgi, L. Kaplan, D. Morin and A. Schenk, “Effects of top compositeness”, Phys. Rev. D 51 (1995) 3888, hep-ph/9410307. [Google Scholar]
  33. B. Hassanain, J. March-Russell and J.G. Rosa, “On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats”, JHEP 07 (2009) 077, arXiv:0904.4108. [CrossRef] [Google Scholar]
  34. C. Burges and H. J. Schnitzer, “Virtual Effects of Excited Quarks as Probes of a Possible New Hadronic Mass Scale”, Nucl. Phys. B 228 (1983) 464. [Google Scholar]
  35. C. Csaki, Y. Grossman, and B. Heidenreich, “MFV SUSY: A Natural Theory for R-Parity Violation”, Phys. Rev. D 85 (2012) 095009, arXiv:1111.1239. [CrossRef] [Google Scholar]
  36. L. Sonnenschein, “Analytical solution of tt̄ dilepton equations”, Phys. Rev. D 73 (2006) 054015, arXiv:hep-ph/0603011. [CrossRef] [Google Scholar]
  37. L. Sonnenschein, “Algebraic approach to solve t anti-t dilepton equations”, Phys. Rev. D 72, 095020, 2005, arXiv:hep-ph/0510100. [CrossRef] [Google Scholar]
  38. M. Schmaltz, “Little Higgs review”, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229, hep-ph/0502182. [CrossRef] [Google Scholar]
  39. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, “Bounds on universal extra dimensions”, Phys. Rev. D 64 (2001) 035002, hep-ph/0012100. [Google Scholar]
  40. CMS collaboration, “Search for new physics in final states with a lepton and missing transverse energy in pp collisions at the LHC, Phys. Rev. D 87 (2013) 072005, arXiv:1302.2812. [Google Scholar]
  41. CMS collaboration, “Search for exotic resonances decaying into WZ/ZZ in pp collisions at √s = 7 TeV, JHEP 02 (2013) 036, arXiv:1211.5779. [Google Scholar]
  42. CMS collaboration, “Search for narrow resonances using the dijet mass spectrum in pp collisions at √s = 8 TeV”, Phys. Rev. D 87 (2013) 114015, arXiv:1302.4794. [Google Scholar]
  43. M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, “First Limits on Left-Right Symmetry Scale from LHC Data”, Phys. Rev. D 83 (2011) 115014, arXiv:1103.1627. [Google Scholar]
  44. CMS Collaboration, “Identifying Hadronically Decaying Vector Bosons Merged into a Single Jet”, CMS Physics Analysis Summary CMS-PAS-JME-13-006, 2013. [Google Scholar]
  45. J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Perez-Victoria, “Handbook of vectorlike quarks: Mixing and single production”, Phys. Rev. D 88 (2013) 094010. [CrossRef] [Google Scholar]
  46. A. Djouadi and A. Lenz, “Sealing the fate of a fourth generation of fermions”, Phys. Lett. B 715 (2012) 310. [Google Scholar]
  47. T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, “Phenomenology of the little Higgs model”, Phys. Rev. D 67 (2003) 095004, arXiv:hep-ph/0301040. [CrossRef] [Google Scholar]
  48. Jürgen Reuter, Marco Tonini, Maikel de Vries, “Littlest Higgs with T-parity: Status and Prospects”, JHEP 1402 (2014) 053, arXiv:1310.2918. [CrossRef] [Google Scholar]
  49. S. P. Martin, “A Supersymmetry primer”, Adv. Ser. Direct. High Energy Phys. 18 (1997) 1, arXiv:hep-ph/9709356. [Google Scholar]
  50. G. Anagnostou, “Model Independent Search in 2-Dimensional Mass Space”, in 2nd International Conference on New Frontiers in Physics, EPJ Web of Conferences, Volume 71, 2014. [Google Scholar]
  51. R. H. Dalitz and G. R. Goldstein, “The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992). [Google Scholar]
  52. D0 Collaboration, “Measurement of the top quark mass in final states with two leptons”, Phys. Rev. D 80, 092006 (2009). [CrossRef] [Google Scholar]
  53. CMS Collaboration, “Measurement of the top quark mass using proton-proton data at √s = 7 and 8 TeV”, CERN-PH-EP-2015-234, arXiv:1509.04044. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.