Open Access
EPJ Web Conf.
Volume 126, 2016
4th International Conference on New Frontiers in Physics
Article Number 04025
Number of page(s) 8
Section Parallel
Published online 04 November 2016
  1. P. Dirac, Quantised Singularities in the Electromagnetic Field, Proc. Roy. Soc. A 133 (1931) 60. [Google Scholar]
  2. G. ‘t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276. [Google Scholar]
  3. A. Polyakov, Particle Specturm in the Quantum Field Theory, JETP Lett 20 (1974) 194. [Google Scholar]
  4. Y. Cho and D. Maison, Monopole configuration in Weinberg-Salam model, Phys. Lett. B 391 (1997) 360. [Google Scholar]
  5. T. Kirkman and C. Zachos, Asymptotic Analysis of the Monopole Structure, Phys. Rev. D 24 (1981) 999. [CrossRef] [Google Scholar]
  6. Y. M. Cho, K. Kim and J.H. Yoon, Finite Energy Electroweak Dyon, Eur. Phys. J. C 75, no. 2, 67 (2015) [arXiv:1305.1699 [hep-ph]]. [Google Scholar]
  7. J. Schwinger, Magnetic charge and the charge quantization condition, Phys. Rev. D 12 (1975) 3105. [CrossRef] [Google Scholar]
  8. S. Ahlen, Stopping-power formula for magnetic monopoles, Phys. Rev. D 17 (1978) 229. [CrossRef] [Google Scholar]
  9. S. Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles, Rev. Mod. Phys. 52 (1980) 121. [Google Scholar]
  10. S. Ahlen and K. Kinoshita, Calculation of the stopping power of very-low-velocity magnetic monopoles, Phys. Rev. D 26 (1982) 2347. [CrossRef] [Google Scholar]
  11. M. Fairbairn, A. Kraan, D. Milstead, T. Sjostrand, P. Skands, and T. Sloan, Stable massive particles at colliders, Phys. Rept. 438 (2007) 1, arXiv:0611040 [hep-ph]. [CrossRef] [Google Scholar]
  12. OPAL Collaboration, Search for Dirac magnetic monopoles in e+e collisions with the OPAL detector at LEP2, Phys. Lett. B 663 (2008) 37, arXiv:0707.0404 [hep-ex]. [Google Scholar]
  13. CDF Collaboration, Direct search for Dirac magnetic monopoles in pp collisions ats = 1.96 TeV, Phys. Rev. Lett. 96 (2006) 201801, arXiv:0509015 [hep-ex]. [CrossRef] [PubMed] [Google Scholar]
  14. J. Pinfold, Searching for the magnetic monopole and other highly ionizing particles at accelerators using nuclear track detectors, Radiat. Meas. 44 (2009) 834. [Google Scholar]
  15. K. Kinoshita, R. Du, G. Giacomelli, L. Patrizii, F. Predieri, P. Serra, M. Spurio, and J. Pinfold, Search for highly ionizing particles in e+e annihilations at sqrt(s)= 91.1 GeV, Phys. Rev. D 46 (1992) 881. [CrossRef] [Google Scholar]
  16. J. Pinfold, R. Du, K. Kinoshita, B. Lorazo, M. Regimbald, and B. Price, A Search for highly ionizing particles produced at the OPAL intersection point at LEP, Phys. Lett. B 316 (1993) 407. [Google Scholar]
  17. M. Bertani, G. Giacomelli, M. Mondardini, B. Pal, L. Patrizii, F. Predieri, P. Serra-Lugaresi, G. Sini, M. Spurio, V. Togo, and S. Zucchelli, Search for Magnetic Monopoles at the Tevatron Collider, Europhys. Lett. 12 (1990) 613. [Google Scholar]
  18. H1 Collaboration, A direct search for stable magnetic monopoles produced in positron-proton collisions at HERA, Eur. Phys. J. C 41 (2005) 133, arXiv:0501039 [hep-ex]. [Google Scholar]
  19. G. Kalbfleisch, K. Milton, M. Strauss, L. Gamberg, E. Smith, and W. Luo, Improved Experimental Limits on the Production of Magnetic Monopoles, Phys. Rev. Lett. 85 (2000) 5292, arXiv:0005005 [hep-ex]. [CrossRef] [PubMed] [Google Scholar]
  20. G. Kalbfleisch, W. Luo, K. Milton, E. Smith, and M. Strauss, Limits on production of magnetic monopoles utilizing samples from the D0 and CDF detectors at the Tevatron, Phys. Rev. D 69 (2004) 052002, arXiv:0306045 [hep-ex]. [CrossRef] [Google Scholar]
  21. A. De Roeck, A. Katre, P. Mermod, D. Milstead, and T. Sloan, Sensitivity of LHC experiments to exotic highly ionising particles, Eur. Phys. J. C 72 (2012) 1985, arXiv:1112.2999 [hep-ph]. [Google Scholar]
  22. ATLAS Collaboration, Search for magnetic monopoles in sqrt(s) = 7 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 109 (2012) 261803, arXiv:1207.6411 [hep-ex]. [CrossRef] [PubMed] [Google Scholar]
  23. ATLAS Collaboration, Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector, CERN-PH-EP-2015-174, arxiv:1509.08059. [Google Scholar]
  24. MoEDAL Collaboration, Technical Design Report of the Moedal Experiment, CERN-LHCC-2009-006 ; MOEDAL-TDR-001 (2009). [Google Scholar]
  25. B. Acharya et al. [MoEDAL Collaboration], The Physics Programme Of The MoEDAL Experiment At The LHC, Int. J. Mod. Phys. A 29, 1430050 (2014) [arXiv:1405.7662 [hep-ph]]. [Google Scholar]
  26. S. Agostinelli, et al., GEANT4: A Simulation toolkit, Nucl.Instrum.Meth. A506 (2003) 250–303. doi:10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
  27. Geant4 Collaboration, [Google Scholar]
  28. A. De Roeck, H.-P. Hächler, A. M. Hirt, M. Dam Joergensen, A. Katre, P. Mermod, D. Milstead, and T. Sloan, Development of a magnetometer-based search strategy for stopped monopoles at the Large Hadron Collider, Eur. Phys. J. C 72 (2012) 2212, arXiv:1206.6793 [physics.ins-det]. [CrossRef] [EDP Sciences] [Google Scholar]
  29. B. Acharya et al. [MoEDAL Collaboration], Search for magnetic monopoles with the MoEDAL trapping detector in 8 TeV proton-proton collisions at the LHC, to be submitted (2015). [Google Scholar]
  30. K. Milton, Theoretical and experimental status of magnetic monopoles, Rep. Prog. Phys. 69 (2006) 1637, arXiv:0602040 [hep-ex]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.