Open Access
Issue
EPJ Web Conf.
Volume 128, 2016
Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2016)
Article Number 02002
Number of page(s) 23
Section Nuclear Applications
DOI https://doi.org/10.1051/epjconf/201612802002
Published online 15 November 2016
  1. R.J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, (2006). [CrossRef] [Google Scholar]
  2. G. Meinrath, Review Focusing on Aspects of Environmental Chemistry, (1998). [Google Scholar]
  3. http://www.world-nuclear.org [Google Scholar]
  4. W.G. Wright, J. Environ. Qual., 28, N 4 (1999). [Google Scholar]
  5. D. Vopálka, et al., J. Radioanal. Nucl. Chem., 286: 681 (2010). [CrossRef] [Google Scholar]
  6. A. Vetešník, et al., Uranium, Mining and Hydrogeolology. Springer, p. 623–630. (2008). [Google Scholar]
  7. J. Višňák, et al., The New Uranium Mining Boom, Edts: B. Merkel and M. Schipek, 643–652 (2012). [Google Scholar]
  8. T. Vercouter, P. Vitorge, B. Amekraz, Ch. Moulin, Inorg. Chem., 47, 2180–2189 (2008). [CrossRef] [PubMed] [Google Scholar]
  9. V. Sladkov, B. Fourest, F. Mercier, Dalton Trans., 7734–7740 (2009). [CrossRef] [PubMed] [Google Scholar]
  10. P. Lubal, J. Havel, Chem. Papers 51 (4) 213–220 (1997). [Google Scholar]
  11. P. Lubal, J. Havel, Talanta 44, 457-466 (1997). [CrossRef] [PubMed] [Google Scholar]
  12. M. Maeder, Y.-M. Neuhold, Science and Technology, Edt: S. Rutan and B. Walczak, 26, Elsevier, (2007). [Google Scholar]
  13. J. Višňák, Master Thesis, FNSPE, Czech Technical University (2010) (In Czech). [Google Scholar]
  14. A. de Juan, R. Tauler, Anal. Chim. Acta, 500 (1–2): 195–210 (2003). [CrossRef] [Google Scholar]
  15. R. Bro, et al., Applied Spectroscopy Reviews. 32 (3): 237–261 (1997). [CrossRef] [Google Scholar]
  16. Ch. F. Beckmann, S.M. Smith, Tensorial Extensions of Independent Component Analysis for Multi- Subject FMRI Analysis, FMRIB, Technical Report TR04CB1, http://www.fmrib.ox.ac.uk. [Google Scholar]
  17. R. Harshman, M. Lundy, Research methods for multimode data analysis, 122-215. Praeger, (1984). [Google Scholar]
  18. R. Harshman, UCLA Working Papers in Phonetics, 16, 84 pp. (1970). [Google Scholar]
  19. G.H. Golub, C. Reinsch, Numerische Mathematik. 14(5): 403–420, (1970). [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Atkins, J. De Paula, Physical Chemistry, W.H. Freeman and Company. p. 212 (2006). [Google Scholar]
  21. K.G. Dyall, K. FaegriJr., Introduction to Relativistic Quantum Chemistry, Oxford Uni. Press, (2007). [Google Scholar]
  22. P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B): B864–B871, (1964). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. W. Kohn, L.J. Sham, Phys. Rev. 140 (4A): A1133-A1138 (1965). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill, (1989). [Google Scholar]
  25. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52(12): 997–1000 (1984). [CrossRef] [Google Scholar]
  26. M. Petersilka, U.J. Gossmann; E.K.U. Gross, Phys. Rev. Lett. 76(8): 1212–1215 (1996). [CrossRef] [PubMed] [Google Scholar]
  27. C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford University, (2012). [Google Scholar]
  28. A.D. Becke, J. Chem. Phys. 98(7): 5648–5652 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  29. F. Weigend et al, Chem. Phys. Letters 294, 143 (1998). [CrossRef] [Google Scholar]
  30. TURBOMOLE V6.5 2013, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, http://www.turbomole.com. [Google Scholar]
  31. F. Furche, et al., WIREs Comput Mol Sci, 4:91–100 (2014). [Google Scholar]
  32. X. Cao, M. Dolg, J. Molec. Struct., 673, 203–209 (2004). [CrossRef] [Google Scholar]
  33. M. Dolg, in Proceedings, J. Grotendorst (Ed.), John von Neumann Institute for Computing, 3, pp. 507–540 (2000). [Google Scholar]
  34. V.E. Jackson, et al., J. Phys. Chem. A, 112, 4095–4099, (2008). [CrossRef] [PubMed] [Google Scholar]
  35. Z. Wang, et al., Environ. Sci. Technol., 38, 5591–5597 (2004). [CrossRef] [PubMed] [Google Scholar]
  36. J. Višňák, J et al., In Lectures of colloquium on Radioanalytical methods, IAA 14, (2014). [Google Scholar]
  37. J. T. Bell, R.E. Biggers, J. Molecular Spectroscopy, 25, 312 (1986). [Google Scholar]
  38. L.H. Jones, Spectrochim. Acta, 10, 395–403, (1958). [CrossRef] [Google Scholar]
  39. J.J. Olivero, R.L. Longbothum, J. of Quantitative Spectroscopy and Radiative Transfer. 17(2): 233–236 (1977). [CrossRef] [Google Scholar]
  40. G.K. Wertheim, et al., Review of Scientific Instruments. 45 (11): 1369–1371 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  41. M. Gal, P.L. Goggin, J. Mink, Spectrochim. Acta 48A (1992). [Google Scholar]
  42. L.C. Andrews, Special Functions of Mathematics for Engineers, Oxford Science Publications, (1998). [Google Scholar]
  43. W.H. Greene, Econometric Analysis, Prentice-Hall, (1993). [Google Scholar]
  44. M. Born, R. Oppenheimer, Ann. Phys. 84, 457 (1927). [Google Scholar]
  45. J. Franck, Transactions of the Faraday Society, 21: 536–542, (1926). [Google Scholar]
  46. E. Condon, Phys Rev, 28: 1182–1201, (1926). [CrossRef] [MathSciNet] [Google Scholar]
  47. A.S. Coolidge, H.M. James, R.D. Present, J. Chem. Phys, 4: 193–211, (1936). [Google Scholar]
  48. P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, Oxford University Press, (1999). [Google Scholar]
  49. V.I. Minkin, Pure and Applied Chemistry. 71, 10, Pages 1919–1981. [Google Scholar]
  50. E. Rudberg, Diploma work in Physical Chemistry, Royal Institute of Technology, Sweden (2003). [Google Scholar]
  51. M. Abramowitz, I. A. Stegun, eds. “Chapter 22”. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 Dover Publications. (1983). [Google Scholar]
  52. https://en.wikipedia.org/wiki/Hermite_polynomials [Google Scholar]
  53. J. Višňák routine in Wolfram Mathematica [54]. [Google Scholar]
  54. Wolfram Research, Inc., Mathematica, Version 10.4, Champaign, IL (2016). [Google Scholar]
  55. J.D.J. Ingle, S.R. Crouch, Spectrochemical Analysis, Prentice Hall, (1988). [Google Scholar]
  56. J.-L. Chang, J. Mol. Spectrosc., 232, 102–104, (2005). [CrossRef] [Google Scholar]
  57. R. Islampour, et al., J. Mol. Spectrosc. 194, 179–184 (1999). [CrossRef] [PubMed] [Google Scholar]
  58. P.-A. Malmqvist, N. Forsberg, Chem. Phys., 228, 227–240, (1998). [CrossRef] [Google Scholar]
  59. K. Pierloot K., E. van Besien, J Chem Phys 123, 204309 (2005). [CrossRef] [PubMed] [Google Scholar]
  60. J. Mehra, H. Rechenberg, The Historical Development of Quantum Theory, Springer, 2001. [Google Scholar]
  61. G. Budylin, et al., Optics Express, 21, No. 18, (2013). [Google Scholar]
  62. H. D. Burrows, S. J. Formosinho, J. Chem. Educ., 55 (2), p 125 (1978). [CrossRef] [Google Scholar]
  63. Laser-Induced Spectroscopy, Helmholtz Zentrum Dresden Rossendorf website, http://www.hzdr.de. [Google Scholar]
  64. H.T. Evans Jr., Science, 141, 154–158, (1963). [CrossRef] [PubMed] [Google Scholar]
  65. R.G. Denning, Gmelin Handbuch der Anorganischen Chemie, Uran (Supplement) A 6, 31–79, (1983). [Google Scholar]
  66. R.G. Denning, et al., Mol. Phys., 37, 1089–1107, (1979). [CrossRef] [Google Scholar]
  67. B. Zhu, S.A. Pennell, D.K. Ryan, Microchem. J., 115, 51–57, (2014). [CrossRef] [Google Scholar]
  68. C. Hennig, et al., AIP Conf. Proc., 882, 262 (2007). [CrossRef] [Google Scholar]
  69. J. Šebera et al, In Scientific report of the project for SÚRAO, the Czech Radioactive Waste Repository Authority for the final control date (Phase 4), FNSPE, Czech Technical University, p 27-42, (July 2009). [Google Scholar]
  70. J.N. Brønsted, J. Am. Chem. Soc., 44, 877–898 and 938–948 (1922). [CrossRef] [Google Scholar]
  71. G. Scatchard, Chem. Rev., 19, 309–327 (1936). [CrossRef] [Google Scholar]
  72. E.A. Guggenheim, Applications of Statistical Mechanics, Clarendon Press, (1966). [Google Scholar]
  73. M.R. Wright, An Introduction to Aqueous Electrolyte Solutions, section 10.6.15, Wiley, (2007). [Google Scholar]
  74. I. Grenthe, H. Wanner, E. Osthols, TDB-2, Guidelines for the extrapolation to zero ionic strength, OECD Nuclear Energy Agency, (2000). [Google Scholar]
  75. M. Bühl, et al., Inorg. Chem., 50, 299–308 (2011). [CrossRef] [PubMed] [Google Scholar]
  76. M. Zhou, L. Andrews, N. Ismail, C. Marsden, J. Phys. Chem. A. 104, 5495–5502 (2000). [Google Scholar]
  77. W.A. Gezahegne, et al., Environ. Sci. Technol., 46, 2228−2233 (2012). [CrossRef] [Google Scholar]
  78. B. Li, et al., Comp. Theor. Chem., 1051, 151–160, (2015). [CrossRef] [Google Scholar]
  79. L. Gagliardi, et al., J. Phys. Chem. A, 105, 10602–10606, (2001). [CrossRef] [Google Scholar]
  80. P.D. Dau, et al., J. Chem. Phys., 137, 064315 (2012). [CrossRef] [PubMed] [Google Scholar]
  81. M. Head-Gordon, et al., Chem. Phys. Lett. 219, 21 (1994). [CrossRef] [Google Scholar]
  82. P.A.M. Dirac, Proc. Royal Soc. (London) A, 123, 714, (1929). [CrossRef] [Google Scholar]
  83. J.C. Slater, Phys. Rev., 81, 385, (1951). [Google Scholar]
  84. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 58 1200, (1980). [Google Scholar]
  85. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37, 785 (1988). [Google Scholar]
  86. A.D. Becke, Phys. Rev. A 38, 3098 (1988). [Google Scholar]
  87. J.P. Perdew, Phys. Rev. B 33, 8822 (1986). [Google Scholar]
  88. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC13 (2013), written by L. Visscher, et al. [Google Scholar]
  89. A. Schäfer, et al., Phys. Chem. Chem. Phys., 2, 2187–2193, (2000). [Google Scholar]
  90. K. Eichkorn, et al., Chem. Phys. Letters 242, 652 (1995). [CrossRef] [Google Scholar]
  91. K. Eichkorn, et al., Theor. Chem. Acc. 97, 119 (1997). [CrossRef] [Google Scholar]
  92. M. Sierka, A. Hogekamp and R. Ahlrichs; J. Chem. Phys. 118, 9136, (2003). [CrossRef] [Google Scholar]
  93. S. Grimme, J. Antony, S. Ehrlich, Krieg, J. Chem. Phys, 132, 154104 (2010). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  94. E.B. Wilson, Jr., J. Chem. Phys. 9(1): 76–84 (1941). [CrossRef] [Google Scholar]
  95. A. Malijevksy, University of Chemistry and Technology, Prague, 2009. http://old.vscht.cz. [Google Scholar]
  96. J. Višňák, et al., Annual report of the Department of Nuclear Chemistry 2011-2012, Prague. http://www.jaderna-chemie.cz/data. [Google Scholar]
  97. J. Višňák, et al., Annual report of the Department of Nuclear Chemistry 2008-2010, Prague. http://www.jaderna-chemie.cz. [Google Scholar]
  98. J. Višňák, Laserem indukovaná fluorescenční spektroskopie s časovym rozlišením jako nástroj pro přímou speciaci uranu o nízkych koncentracích, Bachelor project, FNSPE, Czech Technical University in Prague (2008). [Google Scholar]
  99. V. Sladkov, J. Chromatography A, 1276, 120–125, (2013). [CrossRef] [Google Scholar]
  100. A. Schäfer, J. Chem. Phys., 97, 2571 (1992). [Google Scholar]
  101. A.S.P. Gomes, K.G. Dyall, L. Visscher, Theor Chem Acc, 127: 369, (2010). [CrossRef] [Google Scholar]
  102. J.M. Martinez, L. Martinez, J. Comput. Chem., 24:819-825,(2003). [CrossRef] [PubMed] [Google Scholar]
  103. A.K. Rappé, et al., J. Am. Chem. Soc., 114(25), 10024–10035, (1992). [Google Scholar]
  104. G. Schaftenaar and J.H. Noordik, J. Comput.-Aided Mol. Design, 14, 123–134, (2000). [CrossRef] [EDP Sciences] [Google Scholar]
  105. MATLAB and Statistics Toolbox Release 2012b, The MathWorks, United States. [Google Scholar]
  106. B. Drobot, et al., Chem. Sci., 6, 964–972, (2015). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.