Open Access
Issue
EPJ Web Conf.
Volume 128, 2016
Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2016)
Article Number 02002
Number of page(s) 23
Section Nuclear Applications
DOI https://doi.org/10.1051/epjconf/201612802002
Published online 15 November 2016
  1. R.J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, (2006). [CrossRef]
  2. G. Meinrath, Review Focusing on Aspects of Environmental Chemistry, (1998).
  3. http://www.world-nuclear.org
  4. W.G. Wright, J. Environ. Qual., 28, N 4 (1999). [CrossRef]
  5. D. Vopálka, et al., J. Radioanal. Nucl. Chem., 286: 681 (2010). [CrossRef]
  6. A. Vetešník, et al., Uranium, Mining and Hydrogeolology. Springer, p. 623–630. (2008).
  7. J. Višňák, et al., The New Uranium Mining Boom, Edts: B. Merkel and M. Schipek, 643–652 (2012).
  8. T. Vercouter, P. Vitorge, B. Amekraz, Ch. Moulin, Inorg. Chem., 47, 2180–2189 (2008). [CrossRef] [PubMed]
  9. V. Sladkov, B. Fourest, F. Mercier, Dalton Trans., 7734–7740 (2009). [CrossRef] [PubMed]
  10. P. Lubal, J. Havel, Chem. Papers 51 (4) 213–220 (1997).
  11. P. Lubal, J. Havel, Talanta 44, 457-466 (1997). [CrossRef]
  12. M. Maeder, Y.-M. Neuhold, Science and Technology, Edt: S. Rutan and B. Walczak, 26, Elsevier, (2007).
  13. J. Višňák, Master Thesis, FNSPE, Czech Technical University (2010) (In Czech).
  14. A. de Juan, R. Tauler, Anal. Chim. Acta, 500 (1–2): 195–210 (2003). [CrossRef]
  15. R. Bro, et al., Applied Spectroscopy Reviews. 32 (3): 237–261 (1997). [CrossRef]
  16. Ch. F. Beckmann, S.M. Smith, Tensorial Extensions of Independent Component Analysis for Multi- Subject FMRI Analysis, FMRIB, Technical Report TR04CB1, http://www.fmrib.ox.ac.uk.
  17. R. Harshman, M. Lundy, Research methods for multimode data analysis, 122-215. Praeger, (1984).
  18. R. Harshman, UCLA Working Papers in Phonetics, 16, 84 pp. (1970).
  19. G.H. Golub, C. Reinsch, Numerische Mathematik. 14(5): 403–420, (1970). [CrossRef] [MathSciNet]
  20. P. Atkins, J. De Paula, Physical Chemistry, W.H. Freeman and Company. p. 212 (2006).
  21. K.G. Dyall, K. FaegriJr., Introduction to Relativistic Quantum Chemistry, Oxford Uni. Press, (2007).
  22. P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B): B864–B871, (1964). [CrossRef] [MathSciNet]
  23. W. Kohn, L.J. Sham, Phys. Rev. 140 (4A): A1133-A1138 (1965). [CrossRef] [MathSciNet]
  24. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill, (1989).
  25. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52(12): 997–1000 (1984). [CrossRef]
  26. M. Petersilka, U.J. Gossmann; E.K.U. Gross, Phys. Rev. Lett. 76(8): 1212–1215 (1996). [CrossRef] [PubMed]
  27. C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford University, (2012).
  28. A.D. Becke, J. Chem. Phys. 98(7): 5648–5652 (1993). [NASA ADS] [CrossRef]
  29. F. Weigend et al, Chem. Phys. Letters 294, 143 (1998). [CrossRef]
  30. TURBOMOLE V6.5 2013, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, http://www.turbomole.com.
  31. F. Furche, et al., WIREs Comput Mol Sci, 4:91–100 (2014). [CrossRef]
  32. X. Cao, M. Dolg, J. Molec. Struct., 673, 203–209 (2004). [CrossRef]
  33. M. Dolg, in Proceedings, J. Grotendorst (Ed.), John von Neumann Institute for Computing, 3, pp. 507–540 (2000).
  34. V.E. Jackson, et al., J. Phys. Chem. A, 112, 4095–4099, (2008). [CrossRef]
  35. Z. Wang, et al., Environ. Sci. Technol., 38, 5591–5597 (2004). [CrossRef] [PubMed]
  36. J. Višňák, J et al., In Lectures of colloquium on Radioanalytical methods, IAA 14, (2014).
  37. J. T. Bell, R.E. Biggers, J. Molecular Spectroscopy, 25, 312 (1986). [CrossRef]
  38. L.H. Jones, Spectrochim. Acta, 10, 395–403, (1958). [CrossRef]
  39. J.J. Olivero, R.L. Longbothum, J. of Quantitative Spectroscopy and Radiative Transfer. 17(2): 233–236 (1977). [NASA ADS] [CrossRef]
  40. G.K. Wertheim, et al., Review of Scientific Instruments. 45 (11): 1369–1371 (1974). [NASA ADS] [CrossRef]
  41. M. Gal, P.L. Goggin, J. Mink, Spectrochim. Acta 48A (1992).
  42. L.C. Andrews, Special Functions of Mathematics for Engineers, Oxford Science Publications, (1998).
  43. W.H. Greene, Econometric Analysis, Prentice-Hall, (1993).
  44. M. Born, R. Oppenheimer, Ann. Phys. 84, 457 (1927). [CrossRef]
  45. J. Franck, Transactions of the Faraday Society, 21: 536–542, (1926). [CrossRef]
  46. E. Condon, Phys Rev, 28: 1182–1201, (1926). [CrossRef] [MathSciNet]
  47. A.S. Coolidge, H.M. James, R.D. Present, J. Chem. Phys, 4: 193–211, (1936). [CrossRef]
  48. P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, Oxford University Press, (1999).
  49. V.I. Minkin, Pure and Applied Chemistry. 71, 10, Pages 1919–1981.
  50. E. Rudberg, Diploma work in Physical Chemistry, Royal Institute of Technology, Sweden (2003).
  51. M. Abramowitz, I. A. Stegun, eds. “Chapter 22”. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 Dover Publications. (1983).
  52. https://en.wikipedia.org/wiki/Hermite_polynomials
  53. J. Višňák routine in Wolfram Mathematica [54].
  54. Wolfram Research, Inc., Mathematica, Version 10.4, Champaign, IL (2016).
  55. J.D.J. Ingle, S.R. Crouch, Spectrochemical Analysis, Prentice Hall, (1988).
  56. J.-L. Chang, J. Mol. Spectrosc., 232, 102–104, (2005). [CrossRef]
  57. R. Islampour, et al., J. Mol. Spectrosc. 194, 179–184 (1999). [CrossRef] [PubMed]
  58. P.-A. Malmqvist, N. Forsberg, Chem. Phys., 228, 227–240, (1998). [CrossRef]
  59. K. Pierloot K., E. van Besien, J Chem Phys 123, 204309 (2005). [CrossRef]
  60. J. Mehra, H. Rechenberg, The Historical Development of Quantum Theory, Springer, 2001.
  61. G. Budylin, et al., Optics Express, 21, No. 18, (2013). [CrossRef] [PubMed]
  62. H. D. Burrows, S. J. Formosinho, J. Chem. Educ., 55 (2), p 125 (1978). [CrossRef]
  63. Laser-Induced Spectroscopy, Helmholtz Zentrum Dresden Rossendorf website, http://www.hzdr.de.
  64. H.T. Evans Jr., Science, 141, 154–158, (1963). [CrossRef] [PubMed]
  65. R.G. Denning, Gmelin Handbuch der Anorganischen Chemie, Uran (Supplement) A 6, 31–79, (1983).
  66. R.G. Denning, et al., Mol. Phys., 37, 1089–1107, (1979). [CrossRef]
  67. B. Zhu, S.A. Pennell, D.K. Ryan, Microchem. J., 115, 51–57, (2014). [CrossRef]
  68. C. Hennig, et al., AIP Conf. Proc., 882, 262 (2007). [CrossRef]
  69. J. Šebera et al, In Scientific report of the project for SÚRAO, the Czech Radioactive Waste Repository Authority for the final control date (Phase 4), FNSPE, Czech Technical University, p 27-42, (July 2009).
  70. J.N. Brønsted, J. Am. Chem. Soc., 44, 877–898 and 938–948 (1922). [CrossRef]
  71. G. Scatchard, Chem. Rev., 19, 309–327 (1936). [CrossRef]
  72. E.A. Guggenheim, Applications of Statistical Mechanics, Clarendon Press, (1966).
  73. M.R. Wright, An Introduction to Aqueous Electrolyte Solutions, section 10.6.15, Wiley, (2007).
  74. I. Grenthe, H. Wanner, E. Osthols, TDB-2, Guidelines for the extrapolation to zero ionic strength, OECD Nuclear Energy Agency, (2000).
  75. M. Bühl, et al., Inorg. Chem., 50, 299–308 (2011). [CrossRef] [PubMed]
  76. M. Zhou, L. Andrews, N. Ismail, C. Marsden, J. Phys. Chem. A. 104, 5495–5502 (2000). [CrossRef]
  77. W.A. Gezahegne, et al., Environ. Sci. Technol., 46, 2228−2233 (2012). [CrossRef]
  78. B. Li, et al., Comp. Theor. Chem., 1051, 151–160, (2015). [CrossRef]
  79. L. Gagliardi, et al., J. Phys. Chem. A, 105, 10602–10606, (2001). [CrossRef]
  80. P.D. Dau, et al., J. Chem. Phys., 137, 064315 (2012). [CrossRef]
  81. M. Head-Gordon, et al., Chem. Phys. Lett. 219, 21 (1994). [CrossRef]
  82. P.A.M. Dirac, Proc. Royal Soc. (London) A, 123, 714, (1929). [CrossRef]
  83. J.C. Slater, Phys. Rev., 81, 385, (1951). [CrossRef]
  84. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 58 1200, (1980). [CrossRef] [MathSciNet]
  85. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37, 785 (1988). [NASA ADS] [CrossRef]
  86. A.D. Becke, Phys. Rev. A 38, 3098 (1988). [NASA ADS] [CrossRef] [PubMed]
  87. J.P. Perdew, Phys. Rev. B 33, 8822 (1986). [NASA ADS] [CrossRef]
  88. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC13 (2013), written by L. Visscher, et al.
  89. A. Schäfer, et al., Phys. Chem. Chem. Phys., 2, 2187–2193, (2000). [CrossRef]
  90. K. Eichkorn, et al., Chem. Phys. Letters 242, 652 (1995). [CrossRef]
  91. K. Eichkorn, et al., Theor. Chem. Acc. 97, 119 (1997). [CrossRef]
  92. M. Sierka, A. Hogekamp and R. Ahlrichs; J. Chem. Phys. 118, 9136, (2003). [CrossRef]
  93. S. Grimme, J. Antony, S. Ehrlich, Krieg, J. Chem. Phys, 132, 154104 (2010). [NASA ADS] [CrossRef] [PubMed]
  94. E.B. Wilson, Jr., J. Chem. Phys. 9(1): 76–84 (1941). [CrossRef]
  95. A. Malijevksy, University of Chemistry and Technology, Prague, 2009. http://old.vscht.cz.
  96. J. Višňák, et al., Annual report of the Department of Nuclear Chemistry 2011-2012, Prague. http://www.jaderna-chemie.cz/data.
  97. J. Višňák, et al., Annual report of the Department of Nuclear Chemistry 2008-2010, Prague. http://www.jaderna-chemie.cz.
  98. J. Višňák, Laserem indukovaná fluorescenční spektroskopie s časovym rozlišením jako nástroj pro přímou speciaci uranu o nízkych koncentracích, Bachelor project, FNSPE, Czech Technical University in Prague (2008).
  99. V. Sladkov, J. Chromatography A, 1276, 120–125, (2013). [CrossRef]
  100. A. Schäfer, J. Chem. Phys., 97, 2571 (1992). [CrossRef]
  101. A.S.P. Gomes, K.G. Dyall, L. Visscher, Theor Chem Acc, 127: 369, (2010). [CrossRef]
  102. J.M. Martinez, L. Martinez, J. Comput. Chem., 24:819-825,(2003). [CrossRef] [PubMed]
  103. A.K. Rappé, et al., J. Am. Chem. Soc., 114(25), 10024–10035, (1992). [CrossRef]
  104. G. Schaftenaar and J.H. Noordik, J. Comput.-Aided Mol. Design, 14, 123–134, (2000). [CrossRef] [EDP Sciences]
  105. MATLAB and Statistics Toolbox Release 2012b, The MathWorks, United States.
  106. B. Drobot, et al., Chem. Sci., 6, 964–972, (2015). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.