Open Access
EPJ Web Conf.
Volume 129, 2016
QCD@Work 2016 - International Workshop on Quantum Chromodynamics - Theory and Experiment
Article Number 00016
Number of page(s) 4
Published online 25 November 2016
  1. D.J. Eck: Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981) 1–48. [Google Scholar]
  2. L. Fatibene, M. Francaviglia: Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories; Kluwer Academic Publishers, Dordrecht, 2003. [CrossRef] [Google Scholar]
  3. M. Godina, P. Matteucci: Reductive G-structures and Lie derivatives, J. Geom. Phys. 47 (1) (2003) 66–86. [CrossRef] [Google Scholar]
  4. I. Kolář, P.W. Michor, J. Slovák: Natural Operations in Differential Geometry, (Springer–Verlag, N.Y., 1993). [Google Scholar]
  5. M. Palese, E. Winterroth: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles, Arch. Math. (Brno) 41 (3) (2005) 289–310. [Google Scholar]
  6. M. Palese, E. Winterroth: Covariant gauge-natural conservation laws, Rep. Math. Phys. 54 (3) (2004) 349–364. [CrossRef] [Google Scholar]
  7. M. Palese, E. Winterroth: The relation between the Jacobi morphism and the Hessian in gauge-natural field theories, Theoret. Math. Phys. 152 (2) (2007) 1191–1200. [CrossRef] [Google Scholar]
  8. M. Palese, E. Winterroth: Lagrangian reductive structures on gauge-natural bundles, Rep. Math. Phys. 62 (2) (2008) 229–239. [CrossRef] [Google Scholar]
  9. M. Palese, E. Winterroth: Invariant variational problems and Cartan connections on gauge-natural bundles, AIP Conf. Proc. 1191 (2009) 160–165. [CrossRef] [Google Scholar]
  10. M. Palese, E. Winterroth: A variational perspective on classical Higgs fields in gauge-natural theories, Theor. Math. Phys. 168 (1) (2011) 1002–1008. [CrossRef] [Google Scholar]
  11. M. Palese, E. Winterroth: Higgs fields on spinor gauge-natural bundles, Journal of Physics: Conference Series 411 (2013) 012025. [CrossRef] [Google Scholar]
  12. R.D. Peccei: Exact and Broken Symmetries in Particle Physics, arXiv:hep-ph/0002225. [Google Scholar]
  13. G. Sardanashvily: Geometry of classical Higgs fields, Int. J. Geom. Methods Mod. Phys. 3 (1) (2006) 139–148. [CrossRef] [Google Scholar]
  14. G.A. Sardanashvily: Classical Higgs fields, Theoret. and Math. Phys. 181 (3) (2014) 1599–1611. [CrossRef] [Google Scholar]
  15. J. Vondra: Natural prolongation of principal connections, PhD thesis, Masaryk University, Brno 2010. [Google Scholar]
  16. J. Janyška, J. Vondra: Natural principal connections on the principal gauge prolongation of a principal bundle, Rep. Math. Phys. 64 (3) (2009) 395–415. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.