Open Access
Issue
EPJ Web Conf.
Volume 134, 2017
Subnuclear Structure of Matter: Achievements and Challenges
Article Number 02002
Number of page(s) 23
Section Hadron properties
DOI https://doi.org/10.1051/epjconf/201713402002
Published online 26 January 2017
  1. IsgurN., “Why N*’s are important,” nucl-th/0007008, JLAB-THY-00-20; in: NSTAR2000: Excited Nucleons and Hadronic Structure, Feb. 16-19, 2000, Newport News, Virginia. Proceedings: IsgurN., BurkertV.D. et al. (eds.), Singapore, World Scientific, 2001. [Google Scholar]
  2. KlemptE. and RichardJ.M., “Baryon spectroscopy,” Rev. Mod. Phys. 82, 1095 (2010). [CrossRef] [Google Scholar]
  3. CredeV. and RobertsW., “Progress towards understanding baryon resonances,” Rept. Prog. Phys. 76, 076301 (2013). [CrossRef] [Google Scholar]
  4. GlozmanL.Y., PlessasW., VargaK. and WagenbrunnR.F., “Unified description of light and strange baryon spectra,” Phys. Rev. D 58, 094030 (1998). [CrossRef] [Google Scholar]
  5. CapstickS. andRobertsW., “Quark models of baryon masses and decays”, Prog. Part. Nucl. Phys. 45, S241 (2000). [CrossRef] [Google Scholar]
  6. LöringU., MetschB.C. and PetryH.R., “The light baryon spectrum in a relativistic quark model with instanton-induced quark forces: The non-strange baryon spectrum and ground-states”, Eur. Phys. J. A 10, 395 (2001). [CrossRef] [EDP Sciences] [Google Scholar]
  7. LöringU., MetschB.C. and PetryH.R., “The light baryon spectrum in a relativistic quark model with instanton induced quark forces: The strange baryon spectrum”, Eur. Phys. J. A 10, 447 (2001). [CrossRef] [EDP Sciences] [Google Scholar]
  8. RonnigerM. and MetschB.C., “Effects of a spinflavour dependent interaction on the baryon mass spectrum,” Eur. Phys. J. A 47, 162 (2011). [CrossRef] [EDP Sciences] [Google Scholar]
  9. SantopintoE. and FerrettiJ., “Strange and nonstrange baryon spectra in the relativistic interacting quarkdiquark model with a Gürsey and Radicati-inspired exchange interaction,” Phys. Rev. C 92, 025202 (2015). [CrossRef] [Google Scholar]
  10. EdwardsR.G., DudekJ.J., RichardsD.G. and WallaceS.J., “Excited state baryon spectroscopy from lattice QCD”, Phys. Rev. D 84, 074508 (2011). [CrossRef] [Google Scholar]
  11. HöhlerG., KaiserF., KochR. and PietarinenE., “Handbook of Pion Nucleon Scattering”, Published by Fachinform. Zentr. Karlsruhe 1979, 440 P. (Physics Data, No.12–1 (1979)). [Google Scholar]
  12. CutkoskyR.E., ForsythC.P., BabcockJ.B., KellyR.L. and HendrickR.E., “Pion - Nucleon Partial Wave Analysis”, 4th Int. Conf. on Baryon Resonances, Toronto, Canada, Jul 14-16, 1980. Published in Baryon 1980:19 (QCD161:C45:1980). [Google Scholar]
  13. ArndtR.A., LiZ.-J., RoperL.D., WorkmanR.L. and FordJ.M., “Pion - nucleon partial wave analysis to 2 GeV”, Phys. Rev. D 43, 2131 (1991). [CrossRef] [Google Scholar]
  14. GroomD.E. et al. [Particle Data Group Collaboration], “Review of Particle Physics. Particle Data Group,” Eur. Phys. J. C 15, 1 (2000). [Google Scholar]
  15. ArndtR.A., BriscoeW.J., StrakovskyI.I. and WorkmanR.L., “Extended partial-wave analysis of πN scattering data”, Phys. Rev. C 74, 045205 (2006). [CrossRef] [MathSciNet] [Google Scholar]
  16. AlekseevI.G. et al., “Influence of spin-rotation measurements on partial-wave analyses of elastic pion nucleon scattering”, Phys. Rev. C 55, 2049 (1997). [CrossRef] [Google Scholar]
  17. AlekseevI.G. et al., “Measurements of spin rotation parameter A in pion proton elastic scattering at 1.62- GeV/c”, Phys. Lett. B 485, 32 (2000). [CrossRef] [Google Scholar]
  18. AlekseevI.G. et al., “Measurement of the spin rotation parameter A in the elastic pion proton scattering at 1.43-GeV/c”, Eur. Phys. J. C 45, 383 (2006). [CrossRef] [EDP Sciences] [Google Scholar]
  19. AlekseevI.G. et al., “Backward asymmetry measurements in the elastic pion-proton scattering at resonance energies”, Eur. Phys. J. A 39, 163 (2009). [CrossRef] [EDP Sciences] [Google Scholar]
  20. CapstickS. and PageP.R., “Hybrid and conventional baryons in the flux tube model,” Phys. Rev. C 66, 065204 (2002). [CrossRef] [Google Scholar]
  21. DudekJ.J. and EdwardsR.G., “Hybrid baryons in QCD,” Phys. Rev. D 85, 054016 (2012). [CrossRef] [MathSciNet] [Google Scholar]
  22. AnselminoM., PredazziE., EkelinS., FredrikssonS. and LichtenbergD.B., “Diquarks,” Rev. Mod. Phys. 65, 1199 (1993). [CrossRef] [Google Scholar]
  23. KirchbachM., MoshinskyM. and SmirnovY. F., “Baryons in O(4) and vibron model,” Phys. Rev. D 64, 114005 (2001). [CrossRef] [Google Scholar]
  24. JaffeR.L. and WilczekF., “Diquarks and exotic spectroscopy,” Phys. Rev. Lett. 91, 232003 (2003). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. JaffeR.L., “Exotica,” Phys. Rept. 409, 1 (2005). [Google Scholar]
  26. SantopintoE., “An interacting quark-diquark model of baryons,” Phys. Rev. C 72, 022201 (2005). [CrossRef] [Google Scholar]
  27. EidelmanS. et al. [Particle Data Group Collaboration], “Review of Particle Physics. Particle Data Group,” Phys. Lett. B 592, 1 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  28. KoniukR., IsgurN., “Where have all the resonances gone? An analysis of baryon couplings in a quark model with chromodynamics”, Phys. Rev. Lett. 44, 845 (1980). [CrossRef] [Google Scholar]
  29. MorschH.P. and ZupranskiP., “Structure of the P11(1440) resonance from αp and πN scattering,” Phys. Rev. C 61, 024002 (2000). [CrossRef] [Google Scholar]
  30. SarantsevA. V. et al., “New results on the Roper resonance and the P11 partial wave,” Phys. Lett. B 659, 94 (2008). [CrossRef] [Google Scholar]
  31. LiZ. P., “Photoproduction signatures of hybrid baryons: an application of the quark model with gluonic degrees of freedom,” Phys. Rev. D 44, 2841 (1991). [CrossRef] [Google Scholar]
  32. LiZ.P., BurkertV. and LiZ.J., “Electroproduction of the Roper resonance as a hybrid state,” Phys. Rev. D 46, 70 (1992). [CrossRef] [Google Scholar]
  33. SchneiderS., KrewaldS. and MeissnerU.-G., “The reaction πN → ππN in a meson-exchange approach,” Eur. Phys. J. A 28, 107 (2006). [CrossRef] [EDP Sciences] [Google Scholar]
  34. AznauryanI.G. et al. [CLAS Collaboration], “Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction,” Phys. Rev. C 80, 055203 (2009) . [CrossRef] [Google Scholar]
  35. DalitzR.H., “K-nucleon bound-state interpretation of the 1385MeV π – Λ resonance,” Phys. Rev. Lett. 6, 239 (1961). [CrossRef] [Google Scholar]
  36. GlozmanL.Y., “Restoration of chiral and U(1)A symmetries in excited hadrons,” Phys. Rept. 444, 1 (2007). [CrossRef] [Google Scholar]
  37. GlozmanL.Y., “Chiral multiplets of excited mesons,” Phys. Lett. B 587, 69 (2004). [CrossRef] [Google Scholar]
  38. GlozmanL.Y., “Parity doublets and chiral symmetry restoration in baryon spectrum,” Phys. Lett. B 475, 329 (2000). [CrossRef] [Google Scholar]
  39. BriscoeW.J. et al., gwdac.phys. gwu.edu/. [Google Scholar]
  40. AnisovichA., KlemptE., SarantsevA. and ThomaU., “Partial wave decomposition of pion and photoproduction amplitudes”, Eur. Phys. J. A 24, 111 (2005). [CrossRef] [EDP Sciences] [Google Scholar]
  41. KlemptE., AnisovichA.V., NikonovV.A., SarantsevA.V. and ThomaU., “Phase motion of baryon resonances”, Eur. Phys. J. A 29, 307 (2006). [CrossRef] [EDP Sciences] [Google Scholar]
  42. AnisovichA.V. and SarantsevA.V., “Partial decay widths of baryons in the spin-momentum operator expansion method”, Eur. Phys. J. A 30, 427 (2006). [CrossRef] [EDP Sciences] [Google Scholar]
  43. AnisovichA.V., AnisovichV.V., KlemptE., NikonovV.A. and SarantsevA.V., “Baryon-baryon and baryon-antibaryon interaction amplitudes in the spinmomentum operator expansion method,” Eur. Phys. J. A 34, 129 (2007). [CrossRef] [EDP Sciences] [Google Scholar]
  44. AnisovichA.V., SarantsevA., BartholomyO., KlemptE., NikonovV.A. and ThomaU., “Photoproduction of baryons decaying into Nπ and Nη”, Eur. Phys. J. A 25, 427 (2005). [CrossRef] [EDP Sciences] [Google Scholar]
  45. AnisovichA.V., KleberV., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “Baryon resonances and polarization transfer in hyperon photoproduction”, Eur. Phys. J. A 34, 423 (2007). [Google Scholar]
  46. AnisovichA.V., KlemptE., NikonovV.A., MatveevM.A., SarantsevA.V. and ThomaU., “Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis,” Eur. Phys. J. A 44, 203 (2010). [CrossRef] [EDP Sciences] [Google Scholar]
  47. AnisovichA.V., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “P-wave excited baryons from pion- and photo-induced hyperon production”, Eur. Phys. J. A 47, 27 (2011). [CrossRef] [EDP Sciences] [Google Scholar]
  48. AnisovichA.V., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “Nucleon resonances in the fourth resonance region”, Eur. Phys. J. A 47, 153 (2011). [CrossRef] [EDP Sciences] [Google Scholar]
  49. AnisovichA. V., BeckR., KlemptE., NikonovV. A., SarantsevA. V. and ThomaU., “Properties of baryon resonances from a multichannel partial wave analysis”, Eur. Phys. J. A 48, 15 (2012). [CrossRef] [EDP Sciences] [Google Scholar]
  50. SatoT. and LeeT.-S.H., “Dynamical Models of the Excitations of Nucleon Resonances”, J. Phys. G G 36, 073001 (2009). [CrossRef] [Google Scholar]
  51. DöringM., HanhartC., HuangF., KrewaldS. and MeißnerU.-G., “The Role of the background in the extraction of resonance contributions from meson-baryon scattering”, Phys. Lett. B 681, 26 (2009). [CrossRef] [Google Scholar]
  52. DöringM., HanhartC., HuangF., KrewaldS. and MeißnerU.- G., “Analytic properties of the scattering amplitude and resonances parameters in a meson exchange model”, Nucl. Phys. A 829, 170 (2009). [CrossRef] [Google Scholar]
  53. DöringM., HanhartC., HuangF., KrewaldS., MeissnerU.- G. and RönchenD., “The reaction π+pK+Σ+ in a unitary coupled-channels model,” Nucl. Phys. A 851, 58 (2011). [CrossRef] [Google Scholar]
  54. RönchenD. et al., “Coupled-channel dynamics in the reactions πNπN, ηN, KΛ, KΣ,” Eur. Phys. J. A 49, 44 (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  55. RönchenD. et al., “Photocouplings at the Pole from Pion Photoproduction,” Eur. Phys. J. A 50, 101 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  56. Erratum: [Eur. Phys. J. A 51, 63 (2015)]. [CrossRef] [EDP Sciences] [Google Scholar]
  57. RönchenD., DöringM., HaberzettlH., HaidenbauerJ., MeißnerU.-G. and NakayamaK., “Eta photoproduction in a combined analysis of pion- and photoninduced reactions,” Eur. Phys. J. A 51, 70 (2015). [CrossRef] [EDP Sciences] [Google Scholar]
  58. ChenG.Y., KamalovS.S., YangS.N., DrechselD. and TiatorL., “Nucleon resonances in πN scattering up to energies s1/2 < 2:0-GeV”, Phys. Rev. C 76, 035206 (2007). [CrossRef] [Google Scholar]
  59. MatsuyamaA., SatoT. and T. -S. H. Lee, “Dynamical coupled-channel model of meson production reactions in the nucleon resonance region”, Phys. Rept. 439, 193 (2007). [CrossRef] [Google Scholar]
  60. SarkarS., OsetE. and Vicente VacasM.J., “Baryonic resonances from baryon decuplet-meson octet interaction”, Nucl. Phys. A 750, 294 (2005). [Erratum-ibid. A 780 (2006) 78]. [CrossRef] [Google Scholar]
  61. PennerG. and MoselU., “Vector meson production and nucleon resonance analysis in a coupled channel approach for energies mN < s1/2 < 2-GeV. 1. Pion induced results and hadronic parameters”, Phys. Rev. C 66, 055211 (2002). [CrossRef] [Google Scholar]
  62. PennerG. and MoselU., “Vector meson production and nucleon resonance analysis in a coupled channel approach for energies mN < s1/2 < 2-GeV. 2. Photon induced results,” Phys. Rev. C 66, 055212 (2002). [CrossRef] [Google Scholar]
  63. DenisenkoI. et al., “N* decays to Nω from new data on γpωp“, Phys. Lett. B 755, 97 (2016). [CrossRef] [Google Scholar]
  64. ManleyD.M. and SaleskiE.M., “Multichannel resonance parametrization of πN scattering amplitudes”, Phys. Rev. D 45, 4002 (1992). [CrossRef] [Google Scholar]
  65. ArndtR.A., BriscoeW.J., StrakovskyI.I., WorkmanR.L. and PavanM.M., “Dispersion relation constrained partial wave analysis of πN elastic and πNηN scattering data: The Baryon spectrum”, Phys. Rev. C 69, 035213 (2004). [CrossRef] [Google Scholar]
  66. CredeV. et al. [CB-ELSA Collaboration], “Photoproduction of η mesons off protons for 0.75 GeV < Eγ < 3 GeV,” Phys. Rev. Lett. 94, 012004 (2005). [CrossRef] [PubMed] [Google Scholar]
  67. van PeeH. et al. [CB-ELSA Collaboration], “Photoproduction of π0-mesons off protons from the Δ(1232) region to Eγ = 3 GeV,” Eur. Phys. J. A 31, 61 (2007). [CrossRef] [EDP Sciences] [Google Scholar]
  68. BartholomyO. et al. [CB-ELSA Collaboration], “Neutral pion photoproduction off protons in the energy range 0.3 GeV < Eγ < 3 GeV,” Phys. Rev. Lett. 94, 012003 (2005). [CrossRef] [PubMed] [Google Scholar]
  69. BartholomyO. et al. [CB-ELSA Collaboration], “Photoproduction of η-mesons off protons,” Eur. Phys. J. A 33, 133 (2007). [CrossRef] [EDP Sciences] [Google Scholar]
  70. SarantsevA.V., NikonovV.A., AnisovichA.V., KlemptE. and ThomaU., “Decays of baryon resonances into ΛK+, Σ0K+ and Σ+K0,” Eur. Phys. J. A 25, 441 (2005). [CrossRef] [EDP Sciences] [Google Scholar]
  71. ThomaU. et al., “N* and Δ* decays into Nπ0π0,” Phys. Lett. B 659, 87 (2008). [CrossRef] [Google Scholar]
  72. BeringerJ. et al. [Particle Data Group Collaboration], “Review of Particle Physics (RPP),” Phys. Rev. D 86, 010001 (2012). [Google Scholar]
  73. BradfordR. K. et al. [CLAS Collaboration], “First measurement of beam-recoil observables C(x) and C(z) in hyperon photoproduction,” Phys. Rev. C 75, 035205 (2007). [CrossRef] [Google Scholar]
  74. NikonovV.A., AnisovichA.V., KlemptE., SarantsevA.V. and ThomaU., “Further evidence for N(1900) P(13) from photoproduction of hyperons,” Phys. Lett. B 662, 245 (2008). [CrossRef] [Google Scholar]
  75. SokhoyanV. et al. [CBELSA/TAPS Collaboration], “High-statistics study of the reaction γpp 2π0,” Eur. Phys. J. A 51, 95 (2015); [Google Scholar]
  76. Erratum: [Eur. Phys. J. A 51, no. 12, 187 (2015)]. [CrossRef] [EDP Sciences] [Google Scholar]
  77. GutzE. et al. [CBELSA and TAPS Collaborations], “Photoproduction of meson pairs: First measurement of the polarization observable I**s,” Phys. Lett. B 687, 11 (2010). [CrossRef] [Google Scholar]
  78. GutzE. et al. [CBELSA/TAPS Collaboration], “High statistics study of the reaction γpp π0η,” Eur. Phys. J. A 50, 74 (2014). [Google Scholar]
  79. AssafiriY. et al., “Double π0 photoproduction on the proton at GRAAL,” Phys. Rev. Lett. 90, 222001 (2003). [CrossRef] [PubMed] [Google Scholar]
  80. KashevarovV.L. et al., “Study of the γpπ0 π0 p reaction with the Crystal Ball/TAPS at the Mainz,” Phys. Rev. C 85, 064610 (2012). [CrossRef] [Google Scholar]
  81. AnnandJ.R.M. et al. [A2 Collaboration], “First measurement of target and beam-target asymmetries in the γpπ0 ηp reaction,” Phys. Rev. C 91, 055208 (2015). [CrossRef] [Google Scholar]
  82. SokhoyanV. et al. [CBELSA/TAPS Collaboration], “Data on Is and Ic in Formula reveal cascade decays of N(1900) via N(1520)π,” Phys. Lett. B 746, 127 (2015). [CrossRef] [Google Scholar]
  83. ThielA. et al. [CBELSA/TAPS Collaboration], “Three-body nature of N* and Δ* resonances from sequential decay chains,” Phys. Rev. Lett. 114, 091803 (2015). [CrossRef] [PubMed] [Google Scholar]
  84. MüllerJ. et al. [CBELSA/TAPS Collaboration], “New data on Formula with polarized photons and protons and their implications for N* → Nη decays”, submitted to Physics Letters B. [Google Scholar]
  85. AkondiC.S. et al., “Measurement of the transverse target and beam-target asymmetries in η meson photoproduction at MAMI,” Phys. Rev. Lett. 113, 102001 (2014). [CrossRef] [PubMed] [Google Scholar]
  86. SenderovichI. et al. [CLAS Collaboration], “First measurement of the helicity asymmetry E in η photoproduction on the proton,” Phys. Lett. B 755, 64 (2016). [Google Scholar]
  87. CredeV. et al. [CBELSA/TAPS Collaboration], “Photoproduction of η and η′ mesons off protons,” Phys. Rev. C 80, 055202 (2009). [Google Scholar]
  88. KruscheB. et al., Prog. Part. Nucl. Phys. 51, 399 (2003). [CrossRef] [Google Scholar]
  89. OliveK.A. et al. [Particle Data Group Collaboration], “Review of Particle Physics,” Chin. Phys. C 38, 090001 (2014). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  90. AnisovichA.V., KlemptE., KruscheB., NikonovV.A., SarantsevA.V., ThomaU. and WerthmüllerD., “Interference phenomena in the JP = 1/2 wave in η photoproduction,” Eur. Phys. J. A 51, 72 (2015). [CrossRef] [EDP Sciences] [Google Scholar]
  91. JaegleI. et al. [CBELSA/TAPS Collaboration], “Photoproduction of η′-mesons off the deuteron,” Eur. Phys. J. A 47, 11 (2011). [CrossRef] [EDP Sciences] [Google Scholar]
  92. AnisovichA.V., KlemptE., NikonovV.A., SarantsevA.V., SchmiedenH. and ThomaU., “Evidence for a negative-parity spin-doublet of nucleon resonances at 1.88 GeV,” Phys. Lett. B 711, 162 (2012). [CrossRef] [Google Scholar]
  93. CastelijnsR. et al. [CBELSA/TAPS Collaboration], “Nucleon resonance decay by the K0Σ+ channel,” Eur. Phys. J. A 35, 39 (2008). [CrossRef] [EDP Sciences] [Google Scholar]
  94. EwaldR. et al. [CBELSA/TAPS Collaboration], “Anomaly in the K0SΣ+ photoproduction cross section off the proton at the K* threshold,” Phys. Lett. B 713, 180 (2012). [CrossRef] [Google Scholar]
  95. EwaldR. et al. [CBELSA/TAPS Collaboration], “Measurement of polarisation observables in K0SΣ+ photoproduction off the proton,” Phys. Lett. B 738, 268 (2014). [CrossRef] [Google Scholar]
  96. ElsnerD. et al. [CBELSA and TAPS Collaborations], “Measurement of the beam asymmetry in η- photoproduction off the proton,” Eur. Phys. J. A 33, 147 (2007). [CrossRef] [EDP Sciences] [Google Scholar]
  97. SparksN. et al. [CBELSA/TAPS Collaboration], “Measurement of the Beam Asymmetry Σ in the Forward Direction for Formula Photoproduction,” Phys. Rev. C 81, 065210 (2010). [CrossRef] [Google Scholar]
  98. NakamuraK. et al. [Particle Data Group Collaboration], “Review of particle physics,” J. Phys. G 37, 075021 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  99. KlemptE. and MetschB.C., “Multiplet classification of light-quark baryons,” Eur. Phys. J. A 48, 127 (2012). [CrossRef] [EDP Sciences] [Google Scholar]
  100. ShresthaM. and ManleyD.M., “Multichannel parametrization of πN scattering amplitudes and extraction of resonance parameters,” Phys. Rev. C 86, 055203 (2012). [CrossRef] [Google Scholar]
  101. MaxwellO. V., “Electromagnetic production of kaons from protons, and baryon electromagnetic form factors,” Phys. Rev. C 85, 034611 (2012). [CrossRef] [Google Scholar]
  102. MartT. and KholiliM.J., “Origin of the second peak in the cross section of the K+Λ photoproduction,” Phys. Rev. C 86, 022201 (2012) [CrossRef] [Google Scholar]
  103. ShklyarV., LenskeH. and MoselU., “η-meson production in the resonance-energy region,” Phys. Rev. C 87, 015201 (2013). [CrossRef] [Google Scholar]
  104. AnisovichA.V., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “Evidence for a spinquartet of nucleon resonances at 2 GeV,” Phys. Lett. B 711, 167 (2012). [CrossRef] [Google Scholar]
  105. AnisovichA.V., BurkertV., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “Helicity amplitudes for photoexcitation of nucleon resonances off neutrons,” Eur. Phys. J. A 49, 67 (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  106. AnisovichA.V. et al., “Neutron helicity amplitudes”, in preparation. [Google Scholar]
  107. MatagneN. and StancuF., “Updated 1/Nc expansion analysis of [56, 2+] and [70, ℓ+] baryon multiplets,” Phys. Rev. D 93, 096004 (2016). [CrossRef] [Google Scholar]
  108. WeinbergS., “Phenomenological Lagrangians,” Physica A 96, 327 (1979). [Google Scholar]
  109. Gell-MannM., OakesR. J. and RennerB., “Behavior of current divergences under SU(3) x SU(3),” Phys. Rev. 175, 2195 (1968). [CrossRef] [Google Scholar]
  110. NambuY., “Quasiparticles and Gauge Invariance in the Theory of Superconductivity,” Phys. Rev. 117, 648 (1960). [CrossRef] [MathSciNet] [Google Scholar]
  111. GoldstoneJ., “Field theories with superconductor solutions,” Nuovo Cim. 19, 154 (1961). [Google Scholar]
  112. HornI. et al. [CB-ELSA Collaboration], “Evidence for a parity doublet Δ(1920)P33 and Δ(1940)D33 from γppπ0η,” Phys. Rev. Lett. 101, 202002 (2008). [CrossRef] [PubMed] [Google Scholar]
  113. HornI. et al. [CB-ELSA Collaboration], “Study of the reaction γpp π0 η,” Eur. Phys. J. A 38, 173 (2008). [CrossRef] [EDP Sciences] [Google Scholar]
  114. GlozmanL. Y. and NefedievA. V., “Chiral restoration in excited nucleons versus SU(6),” Nucl. Phys. A 807, 38 (2008). [Google Scholar]
  115. KlemptE. and ZaitsevA., “Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts,” Phys. Rept. 454, 1 (2007). [CrossRef] [Google Scholar]
  116. GlozmanL.Y., private communication to E.K. [Google Scholar]
  117. HartmannJ. et al., “The N(1520)3/2+ helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions,” Phys. Rev. Lett. 113, 062001 (2014). [Google Scholar]
  118. HartmannJ. et al. [CBELSA/TAPS Collaboration], “The polarization observables T, P, and H and their impact on γppπ0 multipoles,” Phys. Lett. B 748, 212 (2015). [Google Scholar]
  119. GottschallM. et al. [CBELSA/TAPS Collaboration], “First measurement of the helicity asymmetry for γppπ0 in the resonance region,” Phys. Rev. Lett. 112, 012003 (2014). [Google Scholar]
  120. ThielA. et al., “Double-polarization observable G in neutral-pion photoproduction off the proton,” submitted to EPJA, arXiv:1604.02922 [nucl-ex]. [Google Scholar]
  121. StrauchS. et al. [CLAS Collaboration], “First Measurement of the Polarization Observable E in the Formula Reaction up to 2.25 GeV,” Phys. Lett. B 750, 53 (2015). [Google Scholar]
  122. KlemptE., private communication. [Google Scholar]
  123. AnisovichA. V., BurkertV., KlemptE., NikonovV. A., PasyukE., SarantsevA. V., StrauchS. and ThomaU., “Existence of Δ(2200)7/2 precludes chiral symmetry restoration at high mass,” arXiv:1503.05774 [nucl-ex]. [Google Scholar]
  124. KlemptE., “A Mass formula for baryon resonances,” Phys. Rev. C 66, 058201 (2002). [CrossRef] [Google Scholar]
  125. ForkelH. and KlemptE., “Diquark correlations in baryon spectroscopy and holographic QCD,” Phys. Lett. B 679, 77 (2009). [CrossRef] [Google Scholar]
  126. KlemptE., “Nucleon Excitations,” Chin. Phys. C 34, 1241 (2010). [CrossRef] [Google Scholar]
  127. KlemptE., “Do parity doublets in the baryon spectrum reflect restoration of chiral symmetry?,” Phys. Lett. B 559, 144 (2003). [CrossRef] [Google Scholar]
  128. KlemptE., “Delta resonances, Quark models, chiral symmetry and AdS/QCD,” Eur. Phys. J. A 38, 187 (2008). [CrossRef] [EDP Sciences] [Google Scholar]
  129. WolfG., “Review of High Energy Diffraction in Real and Virtual Photon Proton scattering at HERA,” Rept. Prog. Phys. 73, 116202 (2010). [CrossRef] [Google Scholar]
  130. DonnachieA. and LandshoffP. V., “Exclusive vector meson production at HERA,” Phys. Lett. B 348, 213 (1995). [CrossRef] [Google Scholar]
  131. DonnachieA. and LandshoffP. V., “Exclusive vector photoproduction: Confirmation of Regge theory,” Phys. Lett. B 478, 146 (2000). [CrossRef] [Google Scholar]
  132. BarthJ. et al., “Low-energy of photoproduciton of ω-mesons,” Eur. Phys. J. A 18, 117 (2003). [CrossRef] [EDP Sciences] [Google Scholar]
  133. AjakaJ. et al. [GRAAL Collaboration], “Evidence for nucleon-resonance excitation in ω-meson photoproduction,” Phys. Rev. Lett. 96, 132003 (2006). [CrossRef] [PubMed] [Google Scholar]
  134. KleinF. et al. [CBELSA/TAPS Collaboration], “Beam asymmetry in near threshold ω photoproduction off the proton,” Phys. Rev. D 78, 117101 (2008). [CrossRef] [Google Scholar]
  135. WilliamsM. et al. [CLAS Collaboration], “Differential cross sections and spin density matrix elements for the reaction γppω,” Phys. Rev. C 80, 065208 (2009). [CrossRef] [Google Scholar]
  136. WilliamsM. et al. [CLAS Collaboration], “Partial wave analysis of the reaction γppω and the search for nucleon resonances,” Phys. Rev. C 80, 065209 (2009). [CrossRef] [Google Scholar]
  137. StrakovskyI.I. et al., “Photoproduction of the ω meson on the proton near threshold,” Phys. Rev. C 91, 045207 (2015). [CrossRef] [Google Scholar]
  138. WilsonA. et al. [CBELSA/TAPS Collaboration], “Photoproduction of ω mesons off the proton,” Phys. Lett. B 749, 407 (2015). [CrossRef] [Google Scholar]
  139. EberhardtH. et al., “Measurement of double polarisation asymmetries in ω-photoproduction,” Phys. Lett. B 750, 453 (2015). [Google Scholar]
  140. DietzF. et al. [CBELSA/TAPS Collaboration], “Photoproduction of ω mesons off protons and neutrons,” Eur. Phys. J. A 51, 6 (2015). [CrossRef] [EDP Sciences] [Google Scholar]
  141. JunkersfeldJ. et al. [CB-ELSA Collaboration], “Photoproduction of π0 ω off protons for Eγ ≤ 3 GeV,” Eur. Phys. J. A 31, 365 (2007). [CrossRef] [EDP Sciences] [Google Scholar]
  142. AnisovichA.V. et al. [CLAS Collaboration], “Differential cross sections and polarization observables from the CLAS K* photoproduction and search for new N* states”, in collaboration review. [Google Scholar]
  143. NanovaM. et al. [CBELSA/TAPS Collaboration], “K0π0Σ+ and K*0Σ+ photoproduction off the proton,” Eur. Phys. J. A 35, 333 (2008). [CrossRef] [EDP Sciences] [Google Scholar]
  144. DiakonovD., PetrovV. and PolyakovM.V., “Exotic anti-decuplet of baryons: Prediction from chiral solitons,” Z. Phys. A 359, 305 (1997). [CrossRef] [Google Scholar]
  145. PolyakovM.V. and RathkeA., “On photoexcitation of baryon anti-decuplet,” Eur. Phys. J. A 18, 691 (2003). [CrossRef] [EDP Sciences] [Google Scholar]
  146. KuznetsovV. and PolyakovM.V., “New Narrow Nucleon N*(1685),” JETP Lett. 88, 347 (2008). [CrossRef] [Google Scholar]
  147. ArndtR.A., AzimovY.I., PolyakovM.V., StrakovskyI.I. and WorkmanR.L., “Nonstrange and other unitarity partners of the exotic Θ+ baryon,” Phys. Rev. C 69, 035208 (2004). [CrossRef] [Google Scholar]
  148. KuznetsovV. et al. [GRAAL Collaboration], “Evidence for a narrow structure at W 1.68-GeV in η photoproduction on the neutron,” Phys. Lett. B 647, 23 (2007). [CrossRef] [Google Scholar]
  149. LiuT., MaoY. and MaB.Q., “Present status on experimental search for pentaquarks,” Int. J. Mod. Phys. A 29, 1430020 (2014). [CrossRef] [Google Scholar]
  150. JaegleI. et al. [CBELSA and TAPS Collaborations], “Quasi-free photoproduction of η-mesons of the neutron,” Phys. Rev. Lett. 100, 252002 (2008). [CrossRef] [PubMed] [Google Scholar]
  151. JaegleI. et al., “Quasi-free photoproduction of η- mesons off the deuteron,” Eur. Phys. J. A 47, 89 (2011). [CrossRef] [EDP Sciences] [Google Scholar]
  152. WerthmüllerD. et al. [A2 Collaboration], “Narrow Structure in the Excitation Function of η Photoproduction off the Neutron,” Phys. Rev. Lett. 111, 232001 (2013). [CrossRef] [PubMed] [Google Scholar]
  153. ShklyarV., LenskeH. and MoselU., “η- photoproduction in the resonance energy region,” Phys. Lett. B 650, 172 (2007). [CrossRef] [Google Scholar]
  154. ShyamR. and ScholtenO., “Photoproduction of η meson within a coupled-channels K-matrix approach,” Phys. Rev. C 78, 065201 (2008). [CrossRef] [Google Scholar]
  155. DöringM. and NakayamaK., “On the cross section ratio σ(n)/σ(p) in η photoproduction,” Phys. Lett. B 683, 145 (2010). [CrossRef] [Google Scholar]
  156. AnisovichA.V., JaegleI., KlemptE., KruscheB., NikonovV.A., SarantsevA.V. and ThomaU., “Photoproduction of η mesons off neutrons from a deuteron target,” Eur. Phys. J. A 41, 13 (2009). [CrossRef] [EDP Sciences] [Google Scholar]
  157. AnisovichA. V., KlemptE., KuznetsovV., NikonovV. A., PolyakovM. V., SarantsevA. V. and ThomaU., “Study of the narrow structure at 1685MeV in γpηp,” Phys. Lett. B 719, 89 (2013). [CrossRef] [Google Scholar]
  158. ZhongX.H. and ZhaoQ., “η photoproduction on the quasi-free nucleons in the chiral quark model,” Phys. Rev. C 84, 045207 (2011). [CrossRef] [Google Scholar]
  159. FantiniA. et al., “First measurement of the Σ beam asymmetry in η photoproduction on the neutron,” Phys. Rev. C 78, 015203 (2008). [CrossRef] [Google Scholar]
  160. R. Di Salvo et al., “Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in the second and third resonances region,” Eur. Phys. J. A 42, 151 (2009). [CrossRef] [EDP Sciences] [Google Scholar]
  161. AnisovichA.V., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “Sign ambiguity in the KΣ channel,” Eur. Phys. J. A 49, 158 (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  162. AnisovichA.V., BeckR., KlemptE., NikonovV.A., SarantsevA.V. and ThomaU., “Pion- and photoinduced transition amplitudes to ΛK, ΣK, and Nη,” Eur. Phys. J. A 48, 88 (2012). [CrossRef] [EDP Sciences] [Google Scholar]
  163. AnisovichA.V. et al., “The Impact of New Polarization Data from Bonn, Mainz and Jefferson Laboratory on γpπN Multipoles,” Eur. Phys. J. A 52, 284 (2016). [CrossRef] [EDP Sciences] [Google Scholar]
  164. ChewG.F., GoldbergerM.L., LowF.E. and NambuY., “Relativistic dispersion relation approach to photomeson production,” Phys. Rev. 106, 1345 (1957). [163] [CrossRef] [MathSciNet] [Google Scholar]
  165. BarkerI.S., DonnachieA. and StorrowJ K., “Complete Experiments in Pseudoscalar Photoproduction,” Nucl. Phys. B 95, 347 (1975). [CrossRef] [Google Scholar]
  166. ChiangW.T. and TabakinF., “Completeness rules for spin observables in pseudoscalar meson photoproduction,” Phys. Rev. C 55, 2054 (1997). [CrossRef] [Google Scholar]
  167. SandorfiA. M., HoblitS., KamanoH. and T.- S. H. Lee, “Determining pseudoscalar meson photoproduction amplitudes from complete experiments,” J. Phys. G 38, 053001 (2011). [CrossRef] [Google Scholar]
  168. WunderlichY., BeckR. and TiatorL., “The complete-experiment problem of photoproduction of pseudoscalar mesons in a truncated partial-wave analysis,” Phys. Rev. C 89, 055203 (2014). [CrossRef] [Google Scholar]
  169. WorkmanR.L., ParisM.W., BriscoeW.J. and StrakovskyI.I., “Unified Chew-Mandelstam SAID analysis of pion photoproduction data,” Phys. Rev. C 86, 015202 (2012). [CrossRef] [Google Scholar]
  170. WorkmanR.L., BriscoeW.J., ParisM.W. and StrakovskyI.I., “Updated SAID analysis of pion photoproduction data,” Phys. Rev. C 85, 025201 (2012). [CrossRef] [Google Scholar]
  171. AnisovichA.V., BeckR., KlemptE., NikonovV.A., SarantsevA.V., ThomaU. and WunderlichY., “Study of ambiguities in πp → ΛK0 scattering amplitudes,” Eur. Phys. J. A 49, 121 (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  172. AnisovichA.V. et al., “Energy-independent PWA of the reaction γpK+ Λ,” Eur. Phys. J. A 50, 129 (2014). [CrossRef] [EDP Sciences] [Google Scholar]
  173. PatersonC. A. et al. [CLAS Collaboration], “Photoproduction of Λ and Σ0 hyperons using linearly polarized photons,” Phys. Rev. C 93, 065201 (2016). [CrossRef] [Google Scholar]
  174. AnisovichA.V. et al., “First (nearly) modelindependent confirmation of resonances in the fourth resonance region”, in preparation. [Google Scholar]
  175. SvarcA., HadzimehmedovicM., OsmanovicH., StahovJ., TiatorL. and WorkmanR.L., “Introducing the Pietarinen expansion method into the singlechannel pole extraction problem,” Phys. Rev. C 88, 035206 (2013). [CrossRef] [Google Scholar]
  176. SvarcA., HadzimehmedovicM., OsmanovicH., StahovJ., TiatorL. and WorkmanR.L., “Pole positions and residues from pion photoproduction using the Laurent-Pietarinen expansion method,” Phys. Rev. C 89, 065208 (2014). [CrossRef] [Google Scholar]
  177. SvarcA., HadzimehmedovicM., OsmanovicH., StahovJ., TiatorL. and WorkmanR.L., “Generalization of the model-independent Laurent–Pietarinen singlechannel pole-extraction formalism to multiple channels,” Phys. Lett. B 755, 452 (2016). [CrossRef] [Google Scholar]
  178. WatsonK. M., “The Hypothesis of Charge Independence for Nuclear Phenomena,” Phys. Rev. 85, 852 (1952). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.