Open Access
Issue
EPJ Web Conf.
Volume 134, 2017
Subnuclear Structure of Matter: Achievements and Challenges
Article Number 05001
Number of page(s) 21
Section Instrumentation
DOI https://doi.org/10.1051/epjconf/201713405001
Published online 26 January 2017
  1. S. Goertz, W. Meyer and G. Reicherz, Polarized H, D and 3He targets for particle physics experiments, Prog. Part. Nucl. Phys. 49, 403–489 (2002) [CrossRef] [Google Scholar]
  2. W. Hillert, The Bonn Electron Stretcher Accelerator ELSA: Past and future, EPJ A28, 139 (2006) [CrossRef] [EDP Sciences] [Google Scholar]
  3. W. Hillert, in this proceedings, (2016) [Google Scholar]
  4. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Oxford University Press, (1970) [Google Scholar]
  5. G. Reicherz et al., Pulsed NMR for the determination of the nuclear polarization, NIM A526, 96 (2004) [CrossRef] [Google Scholar]
  6. Ch. Hess, Ein gepulstes NMR-System zur Polarizationsmessung an Festkörpertargets, Diploma thesis, RUB (2005) [Google Scholar]
  7. St. Goertz et al., Highest polarizations in deuterated compounds, NIM A526, 43 (2004) [CrossRef] [Google Scholar]
  8. St. Goertz, Spintemperatur und magnetische Resonanz verdünnter elektronischer Systeme - ein Weg zur Optimierung polarizierter Festkörper-Targetmaterialien, Habilitation thesis, RUB (2002) [Google Scholar]
  9. J. Heckmann, Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials, Phys. Rev. B74, 134418 (2006) [CrossRef] [Google Scholar]
  10. J. Heckmann et al., Recent Progress in the Dynamic Nuclear Polarization of Solid Deuterated Butanol Targets, Appl. Magn. Reson. 34, 461 (2008) [CrossRef] [Google Scholar]
  11. Ch. Bradtke et al., A new frozen-spin target for 4πparticle detection, NIM A436 430 (1999) [CrossRef] [Google Scholar]
  12. H. Dutz et al., First measurement of the Gerasimov-Drell-Hearn sum rule for 1H from 0.7 to 1.8 GeV at ELSA, Phys. Rev. Lett. 91, 192001 (2003) [CrossRef] [PubMed] [Google Scholar]
  13. Ch. Rohlof and H. Dutz, Effective densities and polarizations of the targets for the GDH-experiments at MAMI and ELSA, NIM A526, 126 (2004) [CrossRef] [Google Scholar]
  14. H. Dutz, Summary of the 9th International Workshop on polarized solid state targets and techniques, Trieste, Italy 2004, World Scientific 221 (2005) [Google Scholar]
  15. S. Runkel, CFD-Simulations of a ‘4π-continuousmode’ dilution refrigerator for the CB-ELSA experiment, XVIth International Workshop in Polarized Sources, Targets, and Polarimetry, PoS(PSTP2015)018, Bochum (2015) [Google Scholar]
  16. J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, Berlin (2002) [CrossRef] [Google Scholar]
  17. H.K. Veersteg, W. Malalasekera, An introduction to Computational Fluid Dynamics, Longman Scientific & Technical, Harlow (1995) [Google Scholar]
  18. C. Bradtke, A New Frozen-Spin Target for the Measurement of Helicity Asymmetry of the Total Photoabsorption Cross-Section, PHD-Thesis, Universität Bonn (2000) [Google Scholar]
  19. W. Polifke and J. Kopitz, Wärmeübertragung: Grundlagen, analytischer und numerische Methoden, Pearson Studium, 2nd edition, chapter 8, Munich, Germany (2009) [Google Scholar]
  20. H. Oertel, Prandtl - Führer durch die Ströhmungslehre, Springer, Wiesbaden (2012) [CrossRef] [Google Scholar]
  21. G. Frosatti, Experimental Techniques: Methods for Cooling Below 300mK, Journal of Low Temperature Physics Vol. 87, 3 (1992) [Google Scholar]
  22. Frank Pobell, Mater and Methods at Low Temperatures, Springer 3rd. edition, Berlin (2007) [CrossRef] [Google Scholar]
  23. OpenFOAM Foundation, OpenFOAM User Guide, Version 2.3.0 (2014) [Google Scholar]
  24. J. P. Van Doormal and G. D. Raithby, Enhancement of the SIMPLE Method for Predicting compressible Flows, Num. Heat Trans 7, 147–163 (xxxx) [Google Scholar]
  25. NIST, Cryogenics Technologies Group, Website (2010), http://cryogenics.nist.gov/MPropsMAY/materialproperties.htm [Google Scholar]
  26. NIST, Chemical Web book, Website (2010), http://webbook.nist.gov/chemistry/fluid/ [Google Scholar]
  27. W. E. Keller, 3He and 4He, 2 ed., Plenum Press (1969). [Google Scholar]
  28. Ch. Rohlof, Entwicklung polarisierter Targets zur Messung der Gerasimov-Drell-Hearn-Summenregel an ELSA, PhD thesis, Universität Bonn (2003) [Google Scholar]
  29. B. Feher, Entwicklung eines supraleitenden, kryostatinternen Polarizationsmagneten für polarizierte Targets, Diploma thesis, Universität Bonn (2010) [Google Scholar]
  30. M. Bornstein, Bau und Test eines kryostatinternen supraleitenden Polarizationsmagneten, Diploma-Thesis, Universität Bonn (2013). [Google Scholar]
  31. M. Bornstein, Development of a thin, internal superconducting polarisation magnet for the Polarised Target, XVIth International Workshop in Polarized Sources, Targets, and Polarimetry, PoS(PSTP2015)006, Bochum (2015) [Google Scholar]
  32. Y. Iwasa, Case Studies in Superconducting Magnets, Second Edition, Springer US, New York (2009). [Google Scholar]
  33. E. Kallenbach, et al. Elektromagnete -Grundlagen, Berechnung, Entwurf, 4. Edition, Vieweg + Teubner Verlag, Wiesbaden (2012). [Google Scholar]
  34. B. van den Brandt et al. Dynamic nuclear polarization in thin polymer foils and tubes, NIM A356, 36 (1995) [CrossRef] [Google Scholar]
  35. B. van den Brandt et al., Dynamic nuclear polarization in thin polyethylene foils cooled via a superfluid 4He film, NIM A381, 219 (1996) [CrossRef] [Google Scholar]
  36. E. I. Bunyatova, Free radicals and polarized targets, NIM A526, 22 (2004) [CrossRef] [Google Scholar]
  37. Kumada et al., Dynamic nuclear polarization of high- and low-crystallinity polyethylenes, NIM A606, 669 (2009) [CrossRef] [Google Scholar]
  38. S. Reeve, Polarisation and relaxation characteristics of irradiated polymeric materials at 1 K and at 2.5 T, XVIth International Workshop in Polarized Sources, Targets, and Polarimetry, PoS(PSTP2015)017, Bochum (2015) [Google Scholar]
  39. D. Libby and M.G. Ormerod, Electron spin resonance spectrum of stretched polyethylene, Journal of Physics and Chemistry of Solids 18, 316 (1961) [CrossRef] [Google Scholar]
  40. E.J. Lawton et al., Paramagnetic-Resonance Studies of Irradiated High-Density Polyethylene. I. Radical Species and the Effect of Environment on Their Behavior, The Journal of Chemical Physics 33, 395 (1960) [CrossRef] [Google Scholar]
  41. H. Fischer and K.-H. Hellwege, Elektronenspinresonanz-Untersuchungen an bestrahltem Polypropylen, Journal of Polymer Science 56, 33 (1962) [CrossRef] [Google Scholar]
  42. L. J. Forrestal andW. G. Hodgson, Electron spin resonance studies of irradiated polypropylene, Journal of Polymer Science Part A 2.3, 1275 (1964) [Google Scholar]
  43. M. Iwasaki et al., Electron spin resonance of trapped free radicals and the photoinduced radical conversion in -irradiated isotactic polypropylene, Journal of Polymer Science Part B: Polymer Letters 5.5, 423 (1967) [CrossRef] [Google Scholar]
  44. S. Nara et al., Configurations of the free radicals in irradiated polypropylene and the relation of their decay reactions to the molecular motion, Journal of Polymer Science Part A-2: Polymer Physics 8.9, 929 (1970) [Google Scholar]
  45. S. Runkel, Herstellung und Untersuchung von Ammoniakkristallen als polariziertes Target für das COMPASS-Experiment, Univerität Bonn (2011) [Google Scholar]
  46. T. Fujimura et al., Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene, Polymer 19, 1031 (1978) [CrossRef] [Google Scholar]
  47. A. Meier, Entwicklung eines Kryo-Thermostaten hoher Kühlleistung zur Targetpräparation für das COMPASS-Experiment, Ruhr-Universität Bochum (1997) [Google Scholar]
  48. S. Reeve, A Wide Temperature Range Cryostat for Polarized Target Material Preparation, Univerität Bonn (2011) [Google Scholar]
  49. G. Reicherz et a., The Bonn polarized target NMRsystem, NIM A356, 74 (1995) [CrossRef] [Google Scholar]
  50. J. Herick, Development of a new Q-meter module, XVIth International Workshop in Polarized Sources, Targets, and Polarimetry, PoS(PSTP2015)011, Bochum (2015) [Google Scholar]
  51. F. Bloch, Nuclear Induction, Phys. Rev., 70, 460–474 (1946). [CrossRef] [Google Scholar]
  52. R.K. Harris, Nuclear Magnetic Resonance Spectroscopy, Longman Scientific & Technical, Harlow, 1986. [Google Scholar]
  53. G.R. Court et al., A high precision Q-meter for the measurement of proton polarization in polarized targets, NIM A324, 433–440 (1993). [CrossRef] [Google Scholar]
  54. J. Herick, Ein neues cw-NMR-Modul und Trityldotierte D-Butanol-Targets für Streuexperimente, PhD thesis, Ruhr-Universität Bochum (2015). [Google Scholar]
  55. P. Hautle, Detection of small NMR signals, Proceedings of the Workshop on NMR in Polarized Targets, University of Virginia (1998). [Google Scholar]
  56. Ch. M. Dulya et al., A line-shape analysis for spin-1 NMR signals, NIM A398, 109–125 (1997). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.