Open Access
EPJ Web Conf.
Volume 137, 2017
XIIth Quark Confinement and the Hadron Spectrum
Article Number 01002
Number of page(s) 14
Section Plenary
Published online 22 March 2017
  1. I. Bloch, J. Dalibard, W. Zwerger, “Many-Body Physics with Ultracold Gases” Rev. Mod. Phys. 80, 885 (2008) [arXiv:0704.3011].
  2. I. Bloch, “Ultracold quantum gases in optical lattices,” Nature Physics 1, 23 (2005).
  3. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. S. De, U. Sen, “Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond,” Adv. in Physics 56 (2007). [CrossRef]
  4. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011). [CrossRef]
  5. U. J. Wiese, “Towards Quantum Simulating QCD,” Nucl. Phys. A 931, 246 (2014) [arXiv:1409.7414 [hep-th]].
  6. P. Danielewicz and M. Gyulassy, “Dissipative Phenomena in Quark Gluon Plasmas,” Phys. Rev. D 31, 53 (1985). [CrossRef]
  7. P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics,” Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/0405231]. [CrossRef] [PubMed]
  8. T. Schäfer and D. Teaney, “Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas,” Rept. Prog. Phys. 72, 126001 (2009) [arXiv:0904.3107 [hep-ph]]. [CrossRef]
  9. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, “Observation of a Strongly-Interacting Degenerate Fermi Gas of Atoms,” Science 298, 2179 (2002) [condmat/0212463]. [CrossRef] [PubMed]
  10. G. Aad et al. [ATLAS Collaboration], “Measurement of the azimuthal anisotropy for charged particle production in √sNN = 2.76 TeV lead-lead collisions with the ATLAS detector,” Phys. Rev. C 86, 014907 (2012) [arXiv:1203.3087 [hep-ex]]. [CrossRef]
  11. C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, “Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics,” Phys. Rev. Lett. 110, 012302 (2013) [arXiv:1209.6330 [nucl-th]]. [CrossRef] [PubMed]
  12. C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schäfer and J. E. Thomas, “Universal Quantum Viscosity in a Unitary Fermi Gas,” Science 331, 58 (2011) [arXiv:1007.2625 [condmat. quant-gas]]. [CrossRef] [PubMed]
  13. M. Bluhm and T. Schäfer, “Model-independent determination of the shear viscosity of a trapped unitary Fermi gas: Application to high temperature data,” Phys. Rev. Lett. 116, no. 11, 115301 (2016) [arXiv:1512.00862 [cond-mat.quant-gas]]. [PubMed]
  14. M. Bluhm and T. Schäfer, “Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Anisotropic fluid dynamics,” Phys. Rev. A 92, no. 4, 043602 (2015) [arXiv:1505.00846 [condmat. quant-gas]].
  15. W. Florkowski and R. Ryblewski, “Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions,” Phys. Rev. C 83, 034907 (2011) [arXiv:1007.0130 [nucl-th]]. [CrossRef]
  16. M. Martinez and M. Strickland, “Dissipative Dynamics of Highly Anisotropic Systems,” Nucl. Phys. A 848, 183 (2010) [arXiv:1007.0889 [nucl-th]].
  17. J. A. Joseph, E. Elliott, J. E. Thomas, “Shear viscosity of a universal Fermi gas near the superfluid phase transition,” Phys. Rev. Lett. 115, 020401 (2015) [arXiv:1410.4835 [cond-mat.quantgas]]. [PubMed]
  18. A. Adams, L. D. Carr, T. Schäfer, P. Steinberg and J. E. Thomas, “Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality,” New J. Phys. 14, 115009 (2012) [arXiv:1205.5180 [hep-th].
  19. M. G. Lingham, K. Fenech, T. Peppler, S. Hoinka, P. Dyke, P. Hannaford and C. J. Vale, “Bragg spectroscopy of strongly interacting Fermi gases,” Jour. of Mod. Optics 63 1783 (2016). [CrossRef]
  20. G. Wlazlowski, P. Magierski, A. Bulgac and K. J. Roche, “The temperature evolution of the shear viscosity in a unitary Fermi gas,” Phys. Rev. A 88, 013639 (2013) [arXiv:1304.2283 [condmat.quant-gas]].
  21. J. Brewer and P. Romatschke, “Nonhydrodynamic Transport in Trapped Unitary Fermi Gases,” Phys. Rev. Lett. 115, no. 19, 190404 (2015) [arXiv:1508.01199 [hep-th]. [PubMed]
  22. R.E. Prange and S.M. Girvin, The Quantum Hall Effect, Springer-Verlag, New York (1990). [CrossRef]
  23. For a review see: X.-G. Wen, Advances in Physics 44, 405 (1995).
  24. X. Chen, Z. X. Liu, X. G. Wen, Phys. Rev. B 23 (2011) 235141;
  25. L. Fu, C. L. Kane, E. J. Mele, Phys. Rev. Lett. 98 (2007) 106803. [CrossRef] [PubMed]
  26. M. C. Diamantini, P. Sodano and C. A. Trugenberger, Eur. Phys. J. B 53 (2006) 19;. [CrossRef] [EDP Sciences]
  27. New. J. Phys. 14 (2012) 063013.
  28. M.C. Diamantini and C.A. Trugenberger, Phys. Rev. B 84 (2011) 094520;
  29. Nucl. Phys. B 891 (2015) 401.
  30. A. M. Polyakov, Nucl. Phys. B 486 (1997) 23.
  31. F. Quevedo and C. A. Trugenberger, Nucl. Phys.B 501 (1997) 143. [CrossRef]
  32. R. B. Laughlin, Science 303 (2004) 1475. [CrossRef] [PubMed]
  33. T. Senthil et al, Science 303 (2004) 1490. [CrossRef] [PubMed]
  34. A. R. Zhitnitsky, Ann. Phys. 336 (2013) 462.
  35. H. B. Thacker, Phys. Rev. D 89 (2014) 125011. [CrossRef]
  36. M. Levin and T. Senthil, “Deconfined quantum criticality and Néel order via dimer disorder,”, Phys. Rev.B 70 (Dec., 2004) 220403, [cond-mat/0405702]. [CrossRef]
  37. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. Fisher, Deconfined quantum critical points., Science 303 (2004), no. 5663 1490–1494. [CrossRef] [PubMed]
  38. T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Quantum criticality beyond the landau-ginzburg-wilson paradigm, Phys. Rev. B 70 (2004), no. 14.
  39. E. Witten, “Large N Chiral Dynamics,”, Annals Phys. 128 (1980) 363. [CrossRef]
  40. M. Unsal, “Magnetic bion condensation: A New mechanism of confinement and mass gap in four dimensions,”, Phys. Rev. D 80 (2009) 065001, [arXiv:0709.3269]. [CrossRef]
  41. M. Unsal and L. G. Yaffe, “Center-stabilized Yang-Mills theory: Confinement and large N volume independence,”, Phys. Rev. D 78 (2008) 065035, [arXiv:0803.0344]. [CrossRef]
  42. M. Shifman and M. Unsal, “QCD-like Theories on R(3) x S(1): A Smooth Journey from Small to Large r(S(1)) with Double-Trace Deformations,”, Phys. Rev. D 78 (2008) 065004, [arXiv:0802.1232]. [CrossRef]
  43. M. M. Anber, E. Poppitz, and T. Sulejmanpasic, “Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD,”, Phys. Rev. D 92 (2015), no. 2 021701, [arXiv:1501.0677]. [CrossRef]
  44. D. Banerjee, M. Bögli, C. P. Hofmann, F. J. Jiang, P. Widmer, and U. J. Wiese, “Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice,”, Phys. Rev.B 94 (2016), no. 11 115120, [arXiv:1511.0088]. [CrossRef]
  45. T. Sulejmanpasic, H. Shao, A. W. Sandvik, and M. Unsal, “Confinement in the bulk, deconfinement on the wall: infrared equivalence between compactified QCD and quantum magnets,”, arXiv:1608.0901.
  46. E. Witten, “Branes and the dynamics of QCD,”, Nucl. Phys.B 507 (1997) 658–690, [hepth/9706109]. [CrossRef]
  47. A. W. Sandvik, “Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions,”, Phys. Rev. Lett. 98 (2007), no. 22 227202, [condmat/0611343]. [CrossRef] [PubMed]
  48. Y. Tang and A.W. Sandvik, “Confinement and Deconfinement of Spinons in Two Dimensions,”, Phys. Rev. Lett. 110 (2013), no. 21 217213, [arXiv:1301.3207]. [PubMed]
  49. H. Shao, W. Guo, and A. W. Sandvik, “Emergent topological excitations in a two-dimensional quantum spin system,” Physical Review B 91 (2015), no. 9 094426.
  50. H. Shao, W. Guo, and A.W. Sandvik, “Quantum criticality with two length scales,” Science 352 (2016), no. 6282 213–216. [CrossRef] [PubMed]
  51. R. K. Kaul, R. G. Melko, and A. W. Sandvik, “Bridging lattice-scale physics and continuum field theory with quantum monte carlo simulations,” Annu. Rev. Condens. Matter Phys. 4 (2013), no. 1 179–215.
  52. B. S. Shastry and B. Sutherland, “Exact ground state of a quantum mechanical antiferromagnet,” Physica B+ C 108 (1981), no. 1-3 1069–1070. [CrossRef]
  53. L. Faddeev and L. Takhtajan, “What is the spin of a spin wave,” Physics Letters A 85 (1981), no. 6-7 375–377.
  54. D. Tennant, T. Perring, R. Cowley, and S. Nagler, “Unbound spinons in the s= 1/2 antiferromagnetic chain KCuF3,” Phys. Rev. Lett. 70 (1993), no. 25 4003. [CrossRef] [PubMed]
  55. D. E. Kharzeev and E. M. Levin, “Color Confinement and Screening in the θ Vacuum of QCD,” Phys. Rev. Lett. 114, no. 24, 242001 (2015) [arXiv:1501.04622 [hep-ph]]. [CrossRef] [PubMed]
  56. D. E. Kharzeev, L. D. McLerran and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’,” Nucl. Phys. A 803, 227 (2008) [arXiv:0711.0950 [hep-ph]].
  57. K. Fukushima, D. E. Kharzeev and H. J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D 78, 074033 (2008) [arXiv:0808.3382 [hep-ph]]. [CrossRef]
  58. D. E. Kharzeev, “The Chiral Magnetic Effect and Anomaly-Induced Transport,” Prog. Part. Nucl. Phys. 75, 133 (2014) [arXiv:1312.3348 [hep-ph]].
  59. D. E. Kharzeev, J. Liao, S. A. Voloshin and G. Wang, “Chiral magnetic and vortical effects in high-energy nuclear collisions? A status report,” Prog. Part. Nucl. Phys. 88, 1 (2016) doi:10.1016/j.ppnp.2016.01.001 [arXiv:1511.04050 [hep-ph]].
  60. B. I. Abelev et al. [STAR Collaboration], “Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation,” Phys. Rev. Lett. 103, 251601 (2009) [arXiv:0909.1739 [nucl-ex]]. [CrossRef] [PubMed]
  61. B. I. Abelev et al. [STAR Collaboration], “Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions,” Phys. Rev. C 81, 054908 (2010) [arXiv:0909.1717 [nucl-ex]]. [CrossRef]
  62. L. Adamczyk et al. [STAR Collaboration], “Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions,” Phys. Rev. Lett. 114, no. 25, 252302 (2015) [arXiv:1504.02175 [nucl-ex]]. [CrossRef] [PubMed]
  63. J. Adam et al. [ALICE Collaboration], “Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at √sNN = 2.76 TeV,” Phys. Rev. C 93, no. 4, 044903 (2016) [arXiv:1512.05739 [nucl-ex]]. [CrossRef]
  64. V. Khachatryan[nucl-ex] et al. [CMS Collaboration], “Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect,” [arXiv:1610.00263 [nucl-ex]].
  65. V. Skokov, P. Sorensen, V. Koch, S. Schlichting, J. Thomas, S. Voloshin, G. Wang and H. U. Yee, “Chiral Magnetic Effect Task Force Report,” arXiv:1608.00982 [nucl-th].
  66. A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007). [CrossRef] [PubMed]
  67. M. Muller, J. Schmalian, L. Fritz, Phys. Rev. Lett. 103, 025301 (2009). [CrossRef] [PubMed]
  68. L. Levitov and G. Falkovich, Nature Physics 12, 672 (2016).
  69. I. L. Aleiner, D. E. Kharzeev and A. M. Tsvelik, “Spontaneous symmetry breakings in grapheme subjected to in-plane magnetic field,” Phys. Rev. B 76, 195415 (2007) [arXiv:0708.0394 [condmat.mes-hall]].
  70. Q. Li et al., “Observation of the chiral magnetic effect in ZrTe5,” Nature Phys. 12, 550 (2016) [arXiv:1412.6543 [cond-mat.str-el]]. [CrossRef]
  71. P. L. Freddolino, C. B. Harrison, Y. Liu, K. Schulten, “Challenges in protein-folding simulations,” Nature Physics 6 751 (2010). [CrossRef] [PubMed]
  72. K. Lindor Larsen, S. Piana, R. Dror, D. Shaw, “How fast-folding proteins fold,” Science 334 (2011) 517. [CrossRef] [PubMed]
  73. M. Chernodub, S. Hu, A. J. Niemi, “Phys. Rev. E 82 011916 (2010),”
  74. Phys. Rev. E 82 011916 (2010).
  75. S. Hu, M. Lundgren, and A. J. Niemi, “Discrete Frenet frame, inflection point solitons, and curve visualization with applications to folded proteins,” Phys. Rev. E 83, 061908 (2011).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.