Open Access
EPJ Web Conf.
Volume 137, 2017
XIIth Quark Confinement and the Hadron Spectrum
Article Number 01002
Number of page(s) 14
Section Plenary
Published online 22 March 2017
  1. I. Bloch, J. Dalibard, W. Zwerger, “Many-Body Physics with Ultracold Gases” Rev. Mod. Phys. 80, 885 (2008) [arXiv:0704.3011]. [Google Scholar]
  2. I. Bloch, “Ultracold quantum gases in optical lattices,” Nature Physics 1, 23 (2005). [Google Scholar]
  3. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. S. De, U. Sen, “Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond,” Adv. in Physics 56 (2007). [CrossRef] [Google Scholar]
  4. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011). [CrossRef] [Google Scholar]
  5. U. J. Wiese, “Towards Quantum Simulating QCD,” Nucl. Phys. A 931, 246 (2014) [arXiv:1409.7414 [hep-th]]. [Google Scholar]
  6. P. Danielewicz and M. Gyulassy, “Dissipative Phenomena in Quark Gluon Plasmas,” Phys. Rev. D 31, 53 (1985). [CrossRef] [Google Scholar]
  7. P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics,” Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/0405231]. [CrossRef] [PubMed] [Google Scholar]
  8. T. Schäfer and D. Teaney, “Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas,” Rept. Prog. Phys. 72, 126001 (2009) [arXiv:0904.3107 [hep-ph]]. [CrossRef] [Google Scholar]
  9. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, “Observation of a Strongly-Interacting Degenerate Fermi Gas of Atoms,” Science 298, 2179 (2002) [condmat/0212463]. [CrossRef] [PubMed] [Google Scholar]
  10. G. Aad et al. [ATLAS Collaboration], “Measurement of the azimuthal anisotropy for charged particle production in √sNN = 2.76 TeV lead-lead collisions with the ATLAS detector,” Phys. Rev. C 86, 014907 (2012) [arXiv:1203.3087 [hep-ex]]. [CrossRef] [Google Scholar]
  11. C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, “Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics,” Phys. Rev. Lett. 110, 012302 (2013) [arXiv:1209.6330 [nucl-th]]. [CrossRef] [PubMed] [Google Scholar]
  12. C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schäfer and J. E. Thomas, “Universal Quantum Viscosity in a Unitary Fermi Gas,” Science 331, 58 (2011) [arXiv:1007.2625 [condmat. quant-gas]]. [CrossRef] [PubMed] [Google Scholar]
  13. M. Bluhm and T. Schäfer, “Model-independent determination of the shear viscosity of a trapped unitary Fermi gas: Application to high temperature data,” Phys. Rev. Lett. 116, no. 11, 115301 (2016) [arXiv:1512.00862 [cond-mat.quant-gas]]. [PubMed] [Google Scholar]
  14. M. Bluhm and T. Schäfer, “Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Anisotropic fluid dynamics,” Phys. Rev. A 92, no. 4, 043602 (2015) [arXiv:1505.00846 [condmat. quant-gas]]. [Google Scholar]
  15. W. Florkowski and R. Ryblewski, “Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions,” Phys. Rev. C 83, 034907 (2011) [arXiv:1007.0130 [nucl-th]]. [CrossRef] [Google Scholar]
  16. M. Martinez and M. Strickland, “Dissipative Dynamics of Highly Anisotropic Systems,” Nucl. Phys. A 848, 183 (2010) [arXiv:1007.0889 [nucl-th]]. [Google Scholar]
  17. J. A. Joseph, E. Elliott, J. E. Thomas, “Shear viscosity of a universal Fermi gas near the superfluid phase transition,” Phys. Rev. Lett. 115, 020401 (2015) [arXiv:1410.4835 [cond-mat.quantgas]]. [PubMed] [Google Scholar]
  18. A. Adams, L. D. Carr, T. Schäfer, P. Steinberg and J. E. Thomas, “Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality,” New J. Phys. 14, 115009 (2012) [arXiv:1205.5180 [hep-th]. [Google Scholar]
  19. M. G. Lingham, K. Fenech, T. Peppler, S. Hoinka, P. Dyke, P. Hannaford and C. J. Vale, “Bragg spectroscopy of strongly interacting Fermi gases,” Jour. of Mod. Optics 63 1783 (2016). [CrossRef] [Google Scholar]
  20. G. Wlazlowski, P. Magierski, A. Bulgac and K. J. Roche, “The temperature evolution of the shear viscosity in a unitary Fermi gas,” Phys. Rev. A 88, 013639 (2013) [arXiv:1304.2283 [condmat.quant-gas]]. [Google Scholar]
  21. J. Brewer and P. Romatschke, “Nonhydrodynamic Transport in Trapped Unitary Fermi Gases,” Phys. Rev. Lett. 115, no. 19, 190404 (2015) [arXiv:1508.01199 [hep-th]. [PubMed] [Google Scholar]
  22. R.E. Prange and S.M. Girvin, The Quantum Hall Effect, Springer-Verlag, New York (1990). [CrossRef] [Google Scholar]
  23. For a review see: X.-G. Wen, Advances in Physics 44, 405 (1995). [Google Scholar]
  24. X. Chen, Z. X. Liu, X. G. Wen, Phys. Rev. B 23 (2011) 235141; [Google Scholar]
  25. L. Fu, C. L. Kane, E. J. Mele, Phys. Rev. Lett. 98 (2007) 106803. [CrossRef] [PubMed] [Google Scholar]
  26. M. C. Diamantini, P. Sodano and C. A. Trugenberger, Eur. Phys. J. B 53 (2006) 19;. [CrossRef] [EDP Sciences] [Google Scholar]
  27. New. J. Phys. 14 (2012) 063013. [Google Scholar]
  28. M.C. Diamantini and C.A. Trugenberger, Phys. Rev. B 84 (2011) 094520; [Google Scholar]
  29. Nucl. Phys. B 891 (2015) 401. [Google Scholar]
  30. A. M. Polyakov, Nucl. Phys. B 486 (1997) 23. [Google Scholar]
  31. F. Quevedo and C. A. Trugenberger, Nucl. Phys.B 501 (1997) 143. [CrossRef] [Google Scholar]
  32. R. B. Laughlin, Science 303 (2004) 1475. [CrossRef] [PubMed] [Google Scholar]
  33. T. Senthil et al, Science 303 (2004) 1490. [CrossRef] [PubMed] [Google Scholar]
  34. A. R. Zhitnitsky, Ann. Phys. 336 (2013) 462. [Google Scholar]
  35. H. B. Thacker, Phys. Rev. D 89 (2014) 125011. [CrossRef] [Google Scholar]
  36. M. Levin and T. Senthil, “Deconfined quantum criticality and Néel order via dimer disorder,”, Phys. Rev.B 70 (Dec., 2004) 220403, [cond-mat/0405702]. [CrossRef] [Google Scholar]
  37. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. Fisher, Deconfined quantum critical points., Science 303 (2004), no. 5663 1490–1494. [CrossRef] [PubMed] [Google Scholar]
  38. T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Quantum criticality beyond the landau-ginzburg-wilson paradigm, Phys. Rev. B 70 (2004), no. 14. [Google Scholar]
  39. E. Witten, “Large N Chiral Dynamics,”, Annals Phys. 128 (1980) 363. [CrossRef] [Google Scholar]
  40. M. Unsal, “Magnetic bion condensation: A New mechanism of confinement and mass gap in four dimensions,”, Phys. Rev. D 80 (2009) 065001, [arXiv:0709.3269]. [CrossRef] [Google Scholar]
  41. M. Unsal and L. G. Yaffe, “Center-stabilized Yang-Mills theory: Confinement and large N volume independence,”, Phys. Rev. D 78 (2008) 065035, [arXiv:0803.0344]. [CrossRef] [Google Scholar]
  42. M. Shifman and M. Unsal, “QCD-like Theories on R(3) x S(1): A Smooth Journey from Small to Large r(S(1)) with Double-Trace Deformations,”, Phys. Rev. D 78 (2008) 065004, [arXiv:0802.1232]. [CrossRef] [Google Scholar]
  43. M. M. Anber, E. Poppitz, and T. Sulejmanpasic, “Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD,”, Phys. Rev. D 92 (2015), no. 2 021701, [arXiv:1501.0677]. [CrossRef] [Google Scholar]
  44. D. Banerjee, M. Bögli, C. P. Hofmann, F. J. Jiang, P. Widmer, and U. J. Wiese, “Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice,”, Phys. Rev.B 94 (2016), no. 11 115120, [arXiv:1511.0088]. [CrossRef] [Google Scholar]
  45. T. Sulejmanpasic, H. Shao, A. W. Sandvik, and M. Unsal, “Confinement in the bulk, deconfinement on the wall: infrared equivalence between compactified QCD and quantum magnets,”, arXiv:1608.0901. [Google Scholar]
  46. E. Witten, “Branes and the dynamics of QCD,”, Nucl. Phys.B 507 (1997) 658–690, [hepth/9706109]. [CrossRef] [Google Scholar]
  47. A. W. Sandvik, “Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions,”, Phys. Rev. Lett. 98 (2007), no. 22 227202, [condmat/0611343]. [CrossRef] [PubMed] [Google Scholar]
  48. Y. Tang and A.W. Sandvik, “Confinement and Deconfinement of Spinons in Two Dimensions,”, Phys. Rev. Lett. 110 (2013), no. 21 217213, [arXiv:1301.3207]. [PubMed] [Google Scholar]
  49. H. Shao, W. Guo, and A. W. Sandvik, “Emergent topological excitations in a two-dimensional quantum spin system,” Physical Review B 91 (2015), no. 9 094426. [Google Scholar]
  50. H. Shao, W. Guo, and A.W. Sandvik, “Quantum criticality with two length scales,” Science 352 (2016), no. 6282 213–216. [CrossRef] [PubMed] [Google Scholar]
  51. R. K. Kaul, R. G. Melko, and A. W. Sandvik, “Bridging lattice-scale physics and continuum field theory with quantum monte carlo simulations,” Annu. Rev. Condens. Matter Phys. 4 (2013), no. 1 179–215. [Google Scholar]
  52. B. S. Shastry and B. Sutherland, “Exact ground state of a quantum mechanical antiferromagnet,” Physica B+ C 108 (1981), no. 1-3 1069–1070. [CrossRef] [Google Scholar]
  53. L. Faddeev and L. Takhtajan, “What is the spin of a spin wave,” Physics Letters A 85 (1981), no. 6-7 375–377. [Google Scholar]
  54. D. Tennant, T. Perring, R. Cowley, and S. Nagler, “Unbound spinons in the s= 1/2 antiferromagnetic chain KCuF3,” Phys. Rev. Lett. 70 (1993), no. 25 4003. [CrossRef] [PubMed] [Google Scholar]
  55. D. E. Kharzeev and E. M. Levin, “Color Confinement and Screening in the θ Vacuum of QCD,” Phys. Rev. Lett. 114, no. 24, 242001 (2015) [arXiv:1501.04622 [hep-ph]]. [CrossRef] [PubMed] [Google Scholar]
  56. D. E. Kharzeev, L. D. McLerran and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’,” Nucl. Phys. A 803, 227 (2008) [arXiv:0711.0950 [hep-ph]]. [Google Scholar]
  57. K. Fukushima, D. E. Kharzeev and H. J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D 78, 074033 (2008) [arXiv:0808.3382 [hep-ph]]. [CrossRef] [Google Scholar]
  58. D. E. Kharzeev, “The Chiral Magnetic Effect and Anomaly-Induced Transport,” Prog. Part. Nucl. Phys. 75, 133 (2014) [arXiv:1312.3348 [hep-ph]]. [Google Scholar]
  59. D. E. Kharzeev, J. Liao, S. A. Voloshin and G. Wang, “Chiral magnetic and vortical effects in high-energy nuclear collisions? A status report,” Prog. Part. Nucl. Phys. 88, 1 (2016) doi:10.1016/j.ppnp.2016.01.001 [arXiv:1511.04050 [hep-ph]]. [Google Scholar]
  60. B. I. Abelev et al. [STAR Collaboration], “Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation,” Phys. Rev. Lett. 103, 251601 (2009) [arXiv:0909.1739 [nucl-ex]]. [CrossRef] [PubMed] [Google Scholar]
  61. B. I. Abelev et al. [STAR Collaboration], “Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions,” Phys. Rev. C 81, 054908 (2010) [arXiv:0909.1717 [nucl-ex]]. [CrossRef] [Google Scholar]
  62. L. Adamczyk et al. [STAR Collaboration], “Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions,” Phys. Rev. Lett. 114, no. 25, 252302 (2015) [arXiv:1504.02175 [nucl-ex]]. [CrossRef] [PubMed] [Google Scholar]
  63. J. Adam et al. [ALICE Collaboration], “Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at √sNN = 2.76 TeV,” Phys. Rev. C 93, no. 4, 044903 (2016) [arXiv:1512.05739 [nucl-ex]]. [CrossRef] [Google Scholar]
  64. V. Khachatryan[nucl-ex] et al. [CMS Collaboration], “Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect,” [arXiv:1610.00263 [nucl-ex]]. [Google Scholar]
  65. V. Skokov, P. Sorensen, V. Koch, S. Schlichting, J. Thomas, S. Voloshin, G. Wang and H. U. Yee, “Chiral Magnetic Effect Task Force Report,” arXiv:1608.00982 [nucl-th]. [Google Scholar]
  66. A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007). [CrossRef] [PubMed] [Google Scholar]
  67. M. Muller, J. Schmalian, L. Fritz, Phys. Rev. Lett. 103, 025301 (2009). [CrossRef] [PubMed] [Google Scholar]
  68. L. Levitov and G. Falkovich, Nature Physics 12, 672 (2016). [Google Scholar]
  69. I. L. Aleiner, D. E. Kharzeev and A. M. Tsvelik, “Spontaneous symmetry breakings in grapheme subjected to in-plane magnetic field,” Phys. Rev. B 76, 195415 (2007) [arXiv:0708.0394 [condmat.mes-hall]]. [Google Scholar]
  70. Q. Li et al., “Observation of the chiral magnetic effect in ZrTe5,” Nature Phys. 12, 550 (2016) [arXiv:1412.6543 [cond-mat.str-el]]. [CrossRef] [Google Scholar]
  71. P. L. Freddolino, C. B. Harrison, Y. Liu, K. Schulten, “Challenges in protein-folding simulations,” Nature Physics 6 751 (2010). [CrossRef] [PubMed] [Google Scholar]
  72. K. Lindor Larsen, S. Piana, R. Dror, D. Shaw, “How fast-folding proteins fold,” Science 334 (2011) 517. [CrossRef] [PubMed] [Google Scholar]
  73. M. Chernodub, S. Hu, A. J. Niemi, “Phys. Rev. E 82 011916 (2010),” [Google Scholar]
  74. Phys. Rev. E 82 011916 (2010). [Google Scholar]
  75. S. Hu, M. Lundgren, and A. J. Niemi, “Discrete Frenet frame, inflection point solitons, and curve visualization with applications to folded proteins,” Phys. Rev. E 83, 061908 (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.