Open Access
Issue
EPJ Web Conf.
Volume 137, 2017
XIIth Quark Confinement and the Hadron Spectrum
Article Number 03006
Number of page(s) 11
Section Section A: Vacuum Structure and Confinement
DOI https://doi.org/10.1051/epjconf/201713703006
Published online 22 March 2017
  1. D. Kharzeev, K. Landsteiner, A. Schmitt and H. U. Yee, “Strongly Interacting Matter in Magnetic Fields,” Lect. Notes Phys. 871 (2013) 1. [CrossRef] [Google Scholar]
  2. V. A. Miransky and I. A. Shovkovy, “Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals,” Phys. Rept. 576 (2015) 1. [CrossRef] [Google Scholar]
  3. G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D. Katz, S. Krieg, A. Schäfer and K. K. Szabo, “The QCD phase diagram for external magnetic fields,” JHEP 1202 (2012) 044. [Google Scholar]
  4. G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D. Katz and A. Schäfer, “QCD quark condensate in external magnetic fields,” Phys. Rev. D 86 (2012) 071502. [CrossRef] [Google Scholar]
  5. D. E. Kharzeev, L. D. McLerran and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’,” Nucl. Phys. A 803 (2008) 227; [Google Scholar]
  6. V. Skokov, A. Y. Illarionov and V. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions,” Int. J. Mod. Phys. A 24 (2009) 5925; [Google Scholar]
  7. K. Tuchin, “Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions,” Phys. Rev. C 88 (2013) 2, 024911; [CrossRef] [Google Scholar]
  8. L. McLerran and V. Skokov, “Comments About the Electromagnetic Field in Heavy-Ion Collisions,” Nucl. Phys. A 929 (2014) 184. [Google Scholar]
  9. D. Dudal and T. G. Mertens, “Melting of charmonium in a magnetic field from an effective AdS/QCD model,” Phys. Rev. D 91 (2015) 086002; [CrossRef] [Google Scholar]
  10. D. Dudal and T. G. Mertens, “Radiation Gauge in AdS/QCD: Inadmissibility and Implications on Spectral Functions in the Deconfined Phase,” Phys. Lett. B 751 (2015) 352; [Google Scholar]
  11. C. Bonati, M. D’Elia and A. Rucci, “Heavy quarkonia in strong magnetic fields,” Phys. Rev. D 92 (2015) no.5, 054014; [CrossRef] [Google Scholar]
  12. K. Fukushima, K. Hattori, H. U. Yee and Y. Yin, “Heavy Quark Di_usion in Strong Magnetic Fields atWeak Coupling and Implications for Elliptic Flow,” Phys. Rev. D 93 (2016) no.7, 074028. [CrossRef] [Google Scholar]
  13. R. Rougemont, R. Critelli and J. Noronha, “Holographic calculation of the QCD crossover temperature in a magnetic field,” Phys. Rev. D 93 (2016) no.4, 045013. [CrossRef] [Google Scholar]
  14. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38 (1999) 1113 [CrossRef] [MathSciNet] [Google Scholar]
  15. [Adv. Theor. Math. Phys. 2 (1998) 231]. [Google Scholar]
  16. D. Dudal, D. R. Granado and T. G. Mertens, “No inverse magnetic catalysis in the QCD hard and soft wall models,” Phys. Rev. D 93 (2016) no.12, 125004. [CrossRef] [Google Scholar]
  17. T. Sakai and S. Sugimoto,“Low energy hadron physics in holographic QCD,” Prog. Theor. Phys. 113 (2005) 843; [CrossRef] [Google Scholar]
  18. “More on a holographic dual of QCD,” Prog. Theor. Phys. 114 (2005) 1083. [Google Scholar]
  19. J. Erlich, E. Katz, D. T. Son and M. A. Stephanov,“QCD and a holographic model of hadrons,” Phys. Rev. Lett. 95 (2005) 261602. [CrossRef] [PubMed] [Google Scholar]
  20. A. Karch, E. Katz, D. T. Son and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D 74 (2006) 015005. [CrossRef] [Google Scholar]
  21. G. F. de Teramond and S. J. Brodsky, “Hadronic spectrum of a holographic dual of QCD,” Phys. Rev. Lett. 94 (2005) 201601. [CrossRef] [PubMed] [Google Scholar]
  22. A. Karch and E. Katz, “Adding flavor to AdS / CFT,” JHEP 0206 (2002) 043. [CrossRef] [Google Scholar]
  23. A. Karch, E. Katz, D. T. Son and M. A. Stephanov, “On the sign of the dilaton in the soft wall models,” JHEP 1104 (2011) 066. [CrossRef] [Google Scholar]
  24. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505. [CrossRef] [MathSciNet] [Google Scholar]
  25. C. P. Herzog, “A Holographic Prediction of the Deconfinement Temperature,” Phys. Rev. Lett. 98 (2007) 091601; [CrossRef] [PubMed] [Google Scholar]
  26. C. A. Ballon Bayona, H. Boschi-Filho, N. R. F. Braga and L. A. Pando Zayas, “On a Holographic Model for Confinement/Deconfinement,” Phys. Rev. D 77 (2008) 046002. [CrossRef] [Google Scholar]
  27. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253; [CrossRef] [MathSciNet] [Google Scholar]
  28. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428 (1998) 105. [Google Scholar]
  29. P. Colangelo, F. Giannuzzi, S. Nicotri and V. Tangorra, “Temperature and quark density effects on the chiral condensate: An AdS/QCD study,” Eur. Phys. J. C 72 (2012) 2096. [CrossRef] [EDP Sciences] [Google Scholar]
  30. E. D’Hoker and P. Kraus, “Magnetic Brane Solutions in AdS,” JHEP 0910 (2009) 088; [CrossRef] [Google Scholar]
  31. “Charged Magnetic Brane Solutions in AdS(5) and the fate of the third law of thermodynamics,” JHEP 1003 (2010) 095. [Google Scholar]
  32. K. A. Mamo, “Inverse magnetic catalysis in holographic models of QCD,” JHEP 1505 (2015) 121. [CrossRef] [Google Scholar]
  33. S. w. Li and T. Jia, “Dynamically flavored description of holographic QCD in the presence of a magnetic field,” arXiv:1604.07197 [hep-th]. [Google Scholar]
  34. Z. Fang, “Anomalous dimension, chiral phase transition and inverse magnetic catalysis in softwall AdS/QCD,” Phys. Lett. B 758 (2016) 1. [Google Scholar]
  35. T. Gherghetta, J. I. Kapusta and T. M. Kelley, “Chiral symmetry breaking in the soft-wall AdS/QCD model,” Phys. Rev. D 79 (2009) 076003. [CrossRef] [Google Scholar]
  36. D. Li, M. Huang, Y. Yang and P. H. Yuan, “Inverse Magnetic Catalysis in the Soft-Wall Model of AdS/QCD,” arXiv:1610.04618 [hep-th]. [Google Scholar]
  37. D. Li and M. Huang, “Chiral phase transition of QCD with Nf = 2 + 1 flavors from holography,” arXiv:1610.09814 [hep-ph]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.