Open Access
Issue
EPJ Web Conf.
Volume 137, 2017
XIIth Quark Confinement and the Hadron Spectrum
Article Number 11011
Number of page(s) 11
Section Statistical Methods for Physics Analysis in the XXI Century
DOI https://doi.org/10.1051/epjconf/201713711011
Published online 22 March 2017
  1. Alwall J., Herquet M, Maltoni F., Mattelaer O., Stelzer T., (2011), Madgraph 5: going beyond, Journal of High Energy Physics, 128, 033009. [Google Scholar]
  2. Azzalini A., Scarpa B. (2012), Data Analysis and Data Mining, Oxford University Press. [Google Scholar]
  3. Chipman H.A., George E.I., McCulloch R.E., (2010), BART: Bayesian Additive Regressive Trees. The Annals of Applied Statistics, 4(1), 266–298. [Google Scholar]
  4. Das S., Konigsberg J., Vernieri C., Rizzi A., (2013). Search for di-Higgs resonances decaying to 4 b-jets in pp collisions at 8 TeV. CMS Analysis Note 2013/227. [Google Scholar]
  5. de Florian D., Mazzitelli J. (2013), Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD. Phys. Rev. Lett. 11 111, pp. 161–168. DOI: 10.1103/PhysRevLett. 111.201801. [Google Scholar]
  6. Friedman J. H., (2002), Stochastic gradient boosting, Computational Statistics & Data Analysis 38, 367–378. [Google Scholar]
  7. Gao J., Guzzi M., Huston J., Lai H.-L., Li Z., Nadolsky P., Pumplin J., Stump D., Yuan C.-P., (2014), Ct10 next-to-next-to-leading order global analysis of qcd, Physical Review, 89. [Google Scholar]
  8. Hastie, T., Tibshirani, R., Friedman J., (2000), Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors), The Annals of Statistics 28, 337–407. [Google Scholar]
  9. Hastie, T., Tibshirani R., Friedman J., (2009) The Elements of Statistical Learning, Springer Series in Statistics. [CrossRef] [MathSciNet] [Google Scholar]
  10. Ishwaran H., James L. F. (2001), Gibbs Sampling Methods for Stick-Breaking Priors. Journal of the American Statistical Association, 96(453), 161–173. [Google Scholar]
  11. Ishwaran J., Kogalur U.B., Gorodeski E.Z., Minn A.J., Lauer M.S., (2010), High-dimensional variable selection for survival data, Journal of the American Statistical Association, 105, 205–217. [Google Scholar]
  12. Ishwaran J., Kogalur U.B., Chen X., Minn A.J., (2011), Random survival forests for high-dimensional data, Statistical Analysis and Data Mining, 4, 115–132. [Google Scholar]
  13. Lang S., Brezger A., (2004) Bayesian P-splines Journal of computational and graphical statistics 13 (1), 183–212. [CrossRef] [Google Scholar]
  14. LHC Higgs Cross Section Working Group, (2012), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions. Tech. rep. arXiv:1201.3084. CERN-2012-002. Geneva, 2012. URL:http://cds.cern.ch/record/1416519 [Google Scholar]
  15. Polson N.G., Scott J.G., Windle J., (2013) Bayesian inference for logistic models using PólyaÐgamma latent variables. Journal of the American Statistical Association, 108(504):1339–1349, [Google Scholar]
  16. Weiser C., (2006), A Combined Secondary Vertex Based B-Tagging Algorithm in CMS. CMS Note 2006/014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.