Open Access
Issue
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
Article Number 16009
Number of page(s) 4
Section Miscellaneous
DOI https://doi.org/10.1051/epjconf/201714016009
Published online 30 June 2017
  1. Wyart M. Marginal stability constrains force and pair distributions at random close packing. Phys. Rev. Lett. 109, 125502 (2012). [PubMed] [Google Scholar]
  2. Francois N., Saadatfar M., Cruikshank R. & Sheppard A. Geometrical frustration in amorphous and partially crystallized packings of spheres. Phys. Rev. Lett. 111, 148001 (2013). [CrossRef] [PubMed] [Google Scholar]
  3. Hanifpour M., Francois N., Vaez Allaei S. M., Senden T. & Saadatfar M. Mechanical characterization of partially crystallized sphere packings. Phys. Rev. Lett. 113, 148001 (2014). [PubMed] [Google Scholar]
  4. Song C., Wang P. & Makse H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008). [CrossRef] [PubMed] [Google Scholar]
  5. Blumenfeld R., Jordan J. F. & Edwards S. F. Interdependence of the volume and stress ensembles and equipartition in statistical mechanics of granular systems. Phys. Rev. Lett. 109, 238001 (2012). [CrossRef] [PubMed] [Google Scholar]
  6. McNamara S., Richard P., Kiesgen de Richter S., Le Caër G. & Delannay R. Measurement of granular entropy. Phys. Rev. E 80, 031301 (2009). [Google Scholar]
  7. Puckett J. G. & Daniels K. E. Equilibrating temperaturelike variables in jammed granular subsystems. Phys. Rev. Lett. 110, 058001 (2013). [CrossRef] [PubMed] [Google Scholar]
  8. Ashwin S. S., Blawzdziewicz J., O’Hern C. S. & Shattuck M. D. Calculations of the structure of basin volumes for mechanically stable packings. Phys. Rev. E 85, 061307 (2012). [Google Scholar]
  9. Aste T., Saadatfar M. & Senden T. J. Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061302 (2005). [Google Scholar]
  10. Robins V., Wood P. J. & Sheppard A. P. Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. Pattern Analysis and Machine Intelligence, IEEE Transactions, 33, 1646–1658 (2011). [CrossRef] [Google Scholar]
  11. Anikeenko A. V., Medvedev N. N. & Aste T. Structural and entropic insights into the nature of the random-close-packing limit. Phys. Rev. E 77, 031101 (2008). [Google Scholar]
  12. Saadatfar M., Takeuchi H., Robins V., Francois N., & Yasuaki H. Topological configuration landscape and pore deformation mechanisms during the crystallisation of sphere packing. Nature Communications, (2016.) [Google Scholar]
  13. van Hecke M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. of Physics: Condensed Matter 22, 033101 (2010). [CrossRef] [PubMed] [Google Scholar]
  14. Charbonneau P., Corwin E. I., Parisi G. & Zamponi F. Universal microstructure and mechanical stability of jammed packings. Phys. Rev. Lett. 109, 205501 (2012). [PubMed] [Google Scholar]
  15. O’Hern C. S., Langer S. A., Liu A. J. & Nagel S. R. Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111 (2001). [CrossRef] [PubMed] [Google Scholar]
  16. Jin Y. & Makse H. A. A first-order phase transition defines the random close packing of hard spheres. Physica A 389, 5362 (2010). [Google Scholar]
  17. Hanifpour M., Francois N., Allaei S. V., Senden T. & Saadatfar M. Structural and mechanical features of the order-disorder transition in experimental hardsphere packings. Phys. Rev. E 91, 062202 (2015). [Google Scholar]
  18. Mari R., Krzakala F. & Kurchan J. Jamming versus glass transitions. Phys. Rev. Lett. 103, 025701 (2009). [CrossRef] [PubMed] [Google Scholar]
  19. Goodrich C. P., Liu A. J. & Nagel S. R. Solids between the mechanical extremes of order and disorder. Nature Physics 10, 578 (2014). [Google Scholar]
  20. Tong H., Tan P. & Xu N. From Crystals to Disordered Crystals: A Hidden Order-Disorder Transition. Scientific Reports 5, doi::10.1038/srep15378 (2015). [Google Scholar]
  21. Moukarzel C. F. Isostatic phase transition and instability in sti↵ granular materials. Phys. Rev. Lett. 81, 1634 (1998). [Google Scholar]
  22. Carlsson G., Gorham J., Kahle M. & Mason J. Computational topology for configuration spaces of hard disks. Phys. Rev. E 85, 011303 (2012). [Google Scholar]
  23. Saadatfar M. et al., 3D mapping of deformation in an unconsolidated sand: A micro mechanical study. SEG Tech. Prog. Expan. Abst. 2012, 1 (2012). [Google Scholar]
  24. Robins V., Saadatfar M., Delgado-Friedrichs O. & Sheppard A. P. Percolating length scales from topological persistence analysis of micro-CT images of porous materials. Water Resources Research, DOI: 10.1002/2015WR017937 (2016). [Google Scholar]
  25. Sufian A., Russell A. R., Whittle A. J. & Saadatfar M., Pore shapes, volume distribution and orientations in monodisperse granular assemblies. Granular Matter, 17(6), 727–742 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.