Open Access
EPJ Web Conf.
Volume 143, 2017
EFM16 – Experimental Fluid Mechanics 2016
Article Number 02022
Number of page(s) 6
Section Contributions
Published online 12 May 2017
  1. Fialová S., Pochylý F., Identification and Experimental verification of the adhesive coefficient of hydrophobic materials, Wasserwirtschaft Extra, 1/2015, ISSN 0043 0978, pp. 125–129 (2015) [CrossRef] [Google Scholar]
  2. Jašíková D. a Kotek M., The Estimation of Dynamic Contact Angle of Ultra-hydrophobic Surfaces Using Inclined Surface and Impinging Droplet Methods. EPJ Web of Conferences. Vol. 67, n. 0. pp. 1–6. ISSN 2100-014X. (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  3. Pochylý F., Fialová S., Kotek M., Zavadil L., Habán V., Volkov A.V., Parygin A.G., Utilization of hydrophobic layers in the design of hydraulic machines, EkopumpRus´2015 - sbornik dokladov, ISBN 978-5-9903138-5-9, printed, pp 77–83 (2015) [Google Scholar]
  4. Versteeg H.K., Malalasekera W., An introduction to computational Fluid Mechanics. Longman, ISBN 0-582-21884-5, 257pages, (1995) [Google Scholar]
  5. De Groot S.R., Mazur P.: Nonequilibrium thermodynamics, North-Holland Publishing, ISBN 0486647412, (1962) [Google Scholar]
  6. Watanabe K., Udagawa Yanuar, H., Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall, J. Fluid Mech.. vol 381, pp 225–238, (1999) [Google Scholar]
  7. C. L. M. H. Navier, Mem Acad. Sci. Inst. France, Vol. 1, pp. 414–416, (1823). [Google Scholar]
  8. Vinogradova Olga I., Slippage of water over hydrophobic surfaces, Int. J. Mineral. Process. 56, pp 31–60, (1999) [CrossRef] [Google Scholar]
  9. J. Ou, B. Perot, J.P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids 16, 4635–4643, (2004) [CrossRef] [Google Scholar]
  10. T. Min and J. Kim: Effects of hydrophobic surface on stability and transition. Physics of Fluids 17, 108106 (2005) [CrossRef] [Google Scholar]
  11. K. Kamrin, M.Z. Bazant, H.A . Stone, Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor, J. Fluid Mech. vol. 658, pp 409–437, (2010) [CrossRef] [Google Scholar]
  12. B.R.K. Gruncelli, N.D. Sandham, G. McHale, Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay, Phys. Fluids 25, 043601, (2013) [CrossRef] [Google Scholar]
  13. P. Six, K. Kamrin, Some exact properties of the effective slipover surfaces with hydrophobic patterning, Phys. Fluids 25, 021703, (2013) [CrossRef] [Google Scholar]
  14. Daniello RJ, Waterhouse NE and Rothstein JP, Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids 21: 085103, (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.