Open Access
EPJ Web Conf.
Volume 143, 2017
EFM16 – Experimental Fluid Mechanics 2016
Article Number 02027
Number of page(s) 7
Section Contributions
Published online 12 May 2017
  1. Arts T., Lambert De Rouvroit M., and Rutherford A.W. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: A test case for inviscid and viscous flow computations. Technical Note 174. Von Karman Institute for Fluid Dynamics, 1990, p. 97. [Google Scholar]
  2. Barth Timothy and Jespersen Dennis. “The design and application of upwind schemes on unstructured meshes”. In: 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. [Google Scholar]
  3. Blazek Jiri. Computational fluid dynamics : principles and applications. Butterworth-Heinemann, 2015, p. 466. [Google Scholar]
  4. Ferziger Joel H. and Peric Milovan. Computational Methods for Fluid Dynamics. Springer Science & Business Media, 2012, p. 426. [Google Scholar]
  5. Fürst Jiří. “A weighted least square scheme for compressible flows”. In: Flow, Turbulence and Combustion 76.4 (2006), pp. 331–342. [CrossRef] [Google Scholar]
  6. Greenshields Christopher J. et al. “Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows”. In: Inter- national Journal for Numerical Methods in Fluids 63.1 (2010), pp. 1–21. [Google Scholar]
  7. Issa R.I. “Solution of the implicitly discretised fluid flow equations by operator-splitting”. In: Journal of Computational Physics 62.1 (1986), pp. 40–65. [Google Scholar]
  8. Kožíšek Martin et al. “Implementation of k-kL- ω Turbulence Model for Compressible Flow into OpenFOAM”. In: Applied Mechanics and Materials 821 (2016), pp. 63–69. [CrossRef] [Google Scholar]
  9. Liou Meng-Sing. “A sequel to AUSM, Part II: AUSM+-up for all speeds”. In: Journal of Computational Physics 214.1 (2006), pp. 137–170. [Google Scholar]
  10. Menter F. R. “Two-equation eddy-viscosity turbulence models for engineering applications”. en. In: AIAA Journal 32.8 (1994), pp. 1598–1605. [NASA ADS] [CrossRef] [Google Scholar]
  11. Menter Florian R. et al. “A one-equation local correlation-based transition model”. In: Flow, Turbulence and Combustion 95.4 (2015), pp. 583–619. [CrossRef] [Google Scholar]
  12. Moukalled F. and Darwish M. “A High- Resolution Pressure-Based Algorithm for Fluid Flow at All Speeds”. In: Journal of Computational Physics 168.1 (2001), pp. 101–130. [CrossRef] [Google Scholar]
  13. Šafřík Pavel. “Experimental data from optical measurement tests on a transonic turbine blade cascade”. In: 13th Symposium on Measuring Tech- niques for Transonic and Supersonic Flow in Cascades and Turbomachines. Ed. by Gyarmathy G.) Grossweiler C.. ETH Zurich, 1996, pp. 0–14. [Google Scholar]
  14. Shen Chun, Sun Fengxian, and Xia Xinlin. “Implementation of density-based solver for all speeds in the framework of OpenFOAM”. In: Computer Physics Communications 185.10 (2014), pp. 2730–2741. [CrossRef] [Google Scholar]
  15. Shen Chun et al. “Implementation of densitybased implicit LU-SGS solver in the framework of OpenFOAM”. In: Advances in Engineering Software 91 (2016), pp. 80–88. [Google Scholar]
  16. Šimurda David, Fürst Jiří, and Luxa Martin. “3D flow past transonic turbine cascade SE 1050 - Experiment and numerical simulations”. In: Journal of Thermal Science 22.4 (2013), pp. 311–319. [CrossRef] [Google Scholar]
  17. Toro Eleuterio F. “The HLL and HLLC Riemann Solvers”. In: Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 293–311. [Google Scholar]
  18. Venkatakrishnan V. “On the accuracy of limiters and convergence to steady state solutions”. In: 31st Aerospace Sciences Meeting & Exhibit (1993), pp. 1–10. [Google Scholar]
  19. Keith Walters, D. and Cokljat Davor. “A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow”. In: Journal of Fluids Engineering 130.12 (2008), pp. 121401–121401–14. [Google Scholar]
  20. Weller H. G. et al. “A tensorial approach to computational continuum mechanics using objectoriented techniques”. In: Computers in Physics 12.6 (1998), p. 620. [Google Scholar]
  21. Xisto Carlos M., Páscoa José C., and OLIVEIRA Paulo J. “A pressure-based high resolution numerical method for resistive MHD”. In: Journal of Computational Physics 275.151 (2014), pp. 323–345. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.