Open Access
Issue
EPJ Web Conf.
Volume 143, 2017
EFM16 – Experimental Fluid Mechanics 2016
Article Number 02061
Number of page(s) 11
Section Contributions
DOI https://doi.org/10.1051/epjconf/201714302061
Published online 12 May 2017
  1. C. J. Kok. AIAA Journal, Vol. 38., No. 7., (2000). [Google Scholar]
  2. M. Kyncl and J. Pelant. Applications of the Navier- Stokes equations for 3d viscous laminar flow for symmetric inlet and outlet parts of turbine engines with the use of various boundary conditions. Technical report R3998, VZLÚ, Beranových 130, Prague, (2006). [Google Scholar]
  3. V. Dolejší Discontinuous Galerkin method for the numerical simulation of unsteady compressible flow. WSEAS Transactions on Systems, 5(5):1083–1090, (2006) [Google Scholar]
  4. M. Kyncl and J. Pelant. Numerical Simulation of the Flow Around Diffusible Barriers. Experimental fluid mechanics 2012, EFM 2012, Hradec Králové (Czech Republic) (2012). [Google Scholar]
  5. M. Kyncl and J. Pelant. The Initial-Boundary Riemann Problem for the Solution of the Compressible Gas Flow. ECCOMAS 2014, ECFD VI, 20.-25.7.2014, Barcelona, Spain (2014). [Google Scholar]
  6. M. Kyncl and J. Pelant. The Initial-Boundary Riemann Problem for the Solution of the Compressible Gas Flow. Applied Mechanics and Materials, Vol. 821, pp. 70-78, 2016. [CrossRef] [Google Scholar]
  7. M. Kyncl and J. Pelant. Analysis of the Boundary Problem with the Preference of Mass Flow. ECCOMAS 2016, 5.-10.6.2016, Crete Island, Greece (2016). [Google Scholar]
  8. M. Kyncl. Numerical solution of the three-dimensional compressible flow. Master’s thesis, Prague, (2011). Doctoral Thesis. [Google Scholar]
  9. M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and Computational Methods for Compressible Flow. Oxford University Press, Oxford, (2003). [Google Scholar]
  10. M. Kyncl and J. Pelant. Implicit method for the 3d Euler equations. Technical report R5375, VZLÚ, Beranových 130, Prague, (2012). [Google Scholar]
  11. M. Kyncl and J. Pelant. Implicit method for the 3d RANS equations with the k-w (Kok) Turbulent Model. Technical report R5453, VZLÚ, Beranových 130, Prague, (2012). [Google Scholar]
  12. M. Feistauer. Mathematical Methods in Fluid Dynamics. Longman Scientific & Technical, Harlow, (1993). [Google Scholar]
  13. E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, (1997). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.