Open Access
Issue
EPJ Web Conf.
Volume 143, 2017
EFM16 – Experimental Fluid Mechanics 2016
Article Number 02125
Number of page(s) 11
Section Contributions
DOI https://doi.org/10.1051/epjconf/201714302125
Published online 12 May 2017
  1. M. Szubel, EFM 2015: Proceedings of the International Conference, Prague, Czech Republic
  2. M. Miltner, A. Makaruk, M. Harasek, A. Friedl, Cl. Tech. and Env. Pol., 5 (2008)
  3. B. Sørensen, Renewable Energy. Its physics, engineering, environmental impacts, economics & planning (Academic Press, Boston, 2000)
  4. L. Rosendahl, Biomass combustion science, technology and engineering (Woodhead Publishing, Oxford 2013) [CrossRef]
  5. T. B. Johansson, H. Kelly, A. K. N. Reddy, R. H. Williams, Renewable Energy Sources for Fuels and Electricity (Island Press, Washington 1993)
  6. S. van Loo, J. Coppejan, The handbook of biomass combustion and co-firing (EARTHSCAN, London 2008)
  7. P. Basu, Biomass gasification and pyrolysis practical design (Academic Press, Boston, 2010)
  8. S. R. Turns, An introduction to combustion. Concepts and applications, (McGraw-Hill, Boston 2000)
  9. I. Glassman, Combustion (Academic Press, Orlando 1987)
  10. R. A. Yetter, F. L. Dryer, H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics, Comb. Sc. and Tech., 79 (1981)
  11. D. J. Hautman, F. L. Dryer, K. P. Schug, I. A. Glassman, A multiple step overall kinetic mechanism for the oxidation of hydrocarbons, Comb. Sc. And Tech. 25 (1981)
  12. C. K. Westbrook, F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Comb. Sc. And Tech., 27 (1981)
  13. H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method (Pearson Education Limited, Harlow, 2007)
  14. L. Chaoqun, T. Jiyuan, Y. Guan-Heng, Computational Fluid Dynamics. A Practical Approach (Butterworth-Heinemann, Oxford 2013)
  15. A. Bianchini, F. Cento, L. Golfera, M. Pellegrini, C. Saccani, Performance analysis of different scrubber systems for removal of particulate emission from a small size biomass boiler, Biom. and Bioen. 92 (2016) [CrossRef]
  16. Q. Xue, T. J. Heindel, R. O. Fox, A CFD model for biomass fast pyrolysis in fluidized-bed reactors, Chem. Eng. Sc., 66 (2011)
  17. J. Blondeau, H. Jeanmart, Biomass pyrolysis in pulverized-fuel boilers: Derivation of apparent kinetic parameters for inclusion in CFD codes, Proc. of Com. Inst., 33 (2011)
  18. R. Baczyński, R. Weber, A. Szlęk, Innovative design solution for small-scale domestic boilers: Combustion improvements using a CFD-based mathematical model, Journ. of En. Inst., 88 (2015)
  19. J. Chaney, H. Liu, L. Li, An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from simplified approach¸ En. Conv. and Man., 63 (2012)
  20. J. Collazo, J. Porteiro, J.L. Miguez, E. Granada, M.A. Gómez, Numerical Simulation of a small-scale biomass boiler, En. Conv. and Man., 64 (2012)
  21. M. Szubel, T. Siwek, Optimization of the operation of energy devices on the example of an air distribution system inside the biomass boiler, Tech. Trans. 19 (2014)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.