Open Access
Issue
EPJ Web Conf.
Volume 143, 2017
EFM16 – Experimental Fluid Mechanics 2016
Article Number 02125
Number of page(s) 11
Section Contributions
DOI https://doi.org/10.1051/epjconf/201714302125
Published online 12 May 2017
  1. M. Szubel, EFM 2015: Proceedings of the International Conference, Prague, Czech Republic [Google Scholar]
  2. M. Miltner, A. Makaruk, M. Harasek, A. Friedl, Cl. Tech. and Env. Pol., 5 (2008) [Google Scholar]
  3. B. Sørensen, Renewable Energy. Its physics, engineering, environmental impacts, economics & planning (Academic Press, Boston, 2000) [Google Scholar]
  4. L. Rosendahl, Biomass combustion science, technology and engineering (Woodhead Publishing, Oxford 2013) [CrossRef] [Google Scholar]
  5. T. B. Johansson, H. Kelly, A. K. N. Reddy, R. H. Williams, Renewable Energy Sources for Fuels and Electricity (Island Press, Washington 1993) [Google Scholar]
  6. S. van Loo, J. Coppejan, The handbook of biomass combustion and co-firing (EARTHSCAN, London 2008) [Google Scholar]
  7. P. Basu, Biomass gasification and pyrolysis practical design (Academic Press, Boston, 2010) [Google Scholar]
  8. S. R. Turns, An introduction to combustion. Concepts and applications, (McGraw-Hill, Boston 2000) [Google Scholar]
  9. I. Glassman, Combustion (Academic Press, Orlando 1987) [Google Scholar]
  10. R. A. Yetter, F. L. Dryer, H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics, Comb. Sc. and Tech., 79 (1981) [Google Scholar]
  11. D. J. Hautman, F. L. Dryer, K. P. Schug, I. A. Glassman, A multiple step overall kinetic mechanism for the oxidation of hydrocarbons, Comb. Sc. And Tech. 25 (1981) [Google Scholar]
  12. C. K. Westbrook, F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Comb. Sc. And Tech., 27 (1981) [Google Scholar]
  13. H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method (Pearson Education Limited, Harlow, 2007) [Google Scholar]
  14. L. Chaoqun, T. Jiyuan, Y. Guan-Heng, Computational Fluid Dynamics. A Practical Approach (Butterworth-Heinemann, Oxford 2013) [Google Scholar]
  15. A. Bianchini, F. Cento, L. Golfera, M. Pellegrini, C. Saccani, Performance analysis of different scrubber systems for removal of particulate emission from a small size biomass boiler, Biom. and Bioen. 92 (2016) [CrossRef] [Google Scholar]
  16. Q. Xue, T. J. Heindel, R. O. Fox, A CFD model for biomass fast pyrolysis in fluidized-bed reactors, Chem. Eng. Sc., 66 (2011) [Google Scholar]
  17. J. Blondeau, H. Jeanmart, Biomass pyrolysis in pulverized-fuel boilers: Derivation of apparent kinetic parameters for inclusion in CFD codes, Proc. of Com. Inst., 33 (2011) [Google Scholar]
  18. R. Baczyński, R. Weber, A. Szlęk, Innovative design solution for small-scale domestic boilers: Combustion improvements using a CFD-based mathematical model, Journ. of En. Inst., 88 (2015) [Google Scholar]
  19. J. Chaney, H. Liu, L. Li, An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from simplified approach¸ En. Conv. and Man., 63 (2012) [Google Scholar]
  20. J. Collazo, J. Porteiro, J.L. Miguez, E. Granada, M.A. Gómez, Numerical Simulation of a small-scale biomass boiler, En. Conv. and Man., 64 (2012) [Google Scholar]
  21. M. Szubel, T. Siwek, Optimization of the operation of energy devices on the example of an air distribution system inside the biomass boiler, Tech. Trans. 19 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.