Open Access
EPJ Web Conf.
Volume 144, 2017
Atmospheric Monitoring for High Energy Astroparticle Detectors (AtmoHEAD) 2016
Article Number 01003
Number of page(s) 7
Published online 17 May 2017
  1. Actis, M. et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy, Exp. Astron. 32 193 (2011) [NASA ADS] [CrossRef] [Google Scholar]
  2. Wakely S. P. & Horan D. TeVCat: An online catalog for Very High Energy Gamma-Ray Astronomy, Proc. 30th ICRC 3 1341 (2008) [Google Scholar]
  3. Bastieri D. et al. Energy Calibration of Cherenkov Telescopes using GLAST Data, Proc. 30th ICRC 3 1555 (2008) [Google Scholar]
  4. Meyer M. et al. The Crab Nebula as a standard candle in very high-energy astrophysics, A&A 523 A2 (2010), arxiv:1008.4524 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Aleksi´c J. et al. The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula, Astrop. Phys. 72 76 (2016), arXiv:1409.5594. [Google Scholar]
  6. Aharonian F. et al. Observations of the Crab nebula with HESS, A&A 457 899 (2006) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Gaug M. et al. Calibration strategies for the Cherenkov Telescope Array, Proc. SPIE Astron. Tel. + Instr. #9149-45 (2014) [Google Scholar]
  8. Bernlöhr K. Impact of atmospheric parameters on the atmospheric Cherenkov technique, Astrop. Phys. 12 255 (2000) astro-ph/9908093 [CrossRef] [Google Scholar]
  9. Garrido D. et al. Atmospheric Aerosols at the MAGIC Site, Proc. 33rd ICRC 0465 (2013) arXiv:1308.0473 [Google Scholar]
  10. Nolan S. J. et al. Detailed studies of atmospheric calibration in imaging Cherenkov astronomy, Astrop. Phys. 34 304 (2010) arXiv:1009.0517 [Google Scholar]
  11. Sobczyńska D.& BednarekW. The impact of clouds on image parameters in IACT at very high energies, Proc. 2nd AtmoHEAD Conf., EPJ 89 03009 (2015) [Google Scholar]
  12. Fruck C.& GaugM. Atmospheric monitoring in MAGIC and data corrections, Proc. 2nd AtmoHEAD Conf., EPJ 89 02003 (2015) [Google Scholar]
  13. de los Reyes R. Atmospheric monitoring in H.E.S.S., these proceedings [Google Scholar]
  14. Hahn J. & de los Reyes R. Atmospheric Monitoring in H.E.S.S., Proc. 2nd AtmoHEAD conf., EPJ 89 02002 (2015) [Google Scholar]
  15. Hildebrand et al. FACT - Measuring Atmospheric Conditions with Imaging Air Cherenkov Telescopes, Proc. 33rd ICRC 0709 (2013) [Google Scholar]
  16. Dorner D. et al. A method to correct IACT data for atmospheric absorption due to the Saharan Air Layer, A&A 493 721 (2009) arXiv:0808.0279v2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Fruck C. A novel LIDAR-based Atmospheric Calibration Method for Improving the Data Analysis of MAGIC, Proc. 33rd ICRC 1054 (2013) arXiv:1403.3591 [Google Scholar]
  18. Font L. Monitoring and Calibration of the Atmosphere in MAGIC, Proc. 33rd ICRC 0090 (2013) [Google Scholar]
  19. Fruck C. The Galactic Center Resolved with MAGIC and a new technique for Atmospheric Calibration, PhD Thesis, TU München (2015), [Google Scholar]
  20. Acharya B. S. et al. Seeing the High-Energy Universe with the Cherenkov Telescope Array - The Science Explored with the CTA, Astrop. Phys. 43 3 (2013) [Google Scholar]
  21. Aleksić J. et al. Optimized dark matter searches in deep observations of Segue 1 with MAGIC, JCAP 2 8 (2014) arXiv:1312.1535 [NASA ADS] [CrossRef] [Google Scholar]
  22. Aleksić J. et al. Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes J. HE Astroph. 5 30 (2015) arxiv:1406.6892 [Google Scholar]
  23. Abramowski A. et al. Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S. A&A 550 A4 (2014) arxiv:1212.3409 [Google Scholar]
  24. García-Gil A. et al. Atmosphere Extinction at the ORM on La Palma: A 20 yr Statistical Database Gathered at the Carlsberg Meridian Telescope PASP 122 1109 (2010) [CrossRef] [Google Scholar]
  25. Stull R. B. An Introduction to Boundary Layer Meteorology, Kluwer Acad. Publ. Dordrecht (1988) [CrossRef] [Google Scholar]
  26. Elterman L. Parameters for Attenuation in the Atmospheric Windows for Fifteen Wavelengths, Appl. Opt. 6 745 (1964) [Google Scholar]
  27. Gaug M. Site characterization for CTA-N, these proceedings [Google Scholar]
  28. Yu H. et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geoph. Res. Lett. 42 (6) 1984 (2015) [CrossRef] [Google Scholar]
  29. Pachauri R. K. & Meyer L. A. (eds.) IPCC 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC Geneva, Switzerland (2014) [Google Scholar]
  30. Dubovik O. et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geoph. Res. 111 D11208 (2006) [Google Scholar]
  31. Kandler K. et al. Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy, Atm. Env. 41 (37) 8058 (2007) [CrossRef] [Google Scholar]
  32. Levoni C. et al. Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes, Appl. Opt. 36 8031 (1997) [Google Scholar]
  33. Müller D et al. Aerosol-type-dependent lidar ratios observed with Raman lidar, J. Geoph. Res. 112 D16202 (2007) [Google Scholar]
  34. Ansmann A. et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Ramanelastic-backscatter lidar, Appl. Opt. 31 (33) 7113 (1992) [Google Scholar]
  35. Andrews E. et al. Climatology of aerosol radiative properties in the free troposphere Atm. Res. 102 (4) 365 (2011) [CrossRef] [Google Scholar]
  36. Haffke M. Atmosphere Is MAGIC. Berechnung und Implementierung neuer Atmospharenmodelle in die MAGIC-Monte-Karlo-Kette, Dipl. thesis Univ. Dortmund, Germany (2007) [Google Scholar]
  37. Marín J. et al. Density profile characterization and modeling at Paranal and Armazones 2k sites, these proceedings [Google Scholar]
  38. Vrastil M. Overview of Atmospheric Simulation Efforts in CTA, these proceedings [Google Scholar]
  39. Daniel M. Application of radiosonde data to VERITAS simulations, Proc 30th ICRC 3 1329 (2008) [Google Scholar]
  40. Lakićević M. et al. Atmospheric conditions at Cerro Armazones derived from astronomical data, A&A 588 A32 (2016) [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Thompson A. M. et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station-tostation variability, and evaluation with simulated flight profiles, J. Geoph. Res.: Atm. 112 D03304 (2007) [Google Scholar]
  42. Cuevas E. et al. Surface O3 characterization in the sub- tropical North Atlantic troposphere, Atm. Chem. Phys. 13 1973 (2013) [CrossRef] [Google Scholar]
  43. Haynes P. H. & McIntyre M. E. On the conservation and impermeability therorems of potential vorticity, J. Atm. Sci. 47 2021 (1990) [CrossRef] [Google Scholar]
  44. Rondanelli R. et al. Rapid changes in ozone mixing ratios at Cerro Tololo (30°10′S, 70°48′W, 2200 m) in connection with cutoff lows and deep troughs, J. Geoph. Res.: Atm. 107 (D23) ACL 6-1 (2002) [CrossRef] [Google Scholar]
  45. Anet J. G et al. Surface ozone in the southern hemisphere: 20 years of data from a site with a unique setting in El Tololo, Chile, Atm. Chem. Phys. 2016 1 (2016) [Google Scholar]
  46. ŠkerlakB. et al. A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011, Atm. Chem. Phys. 14 913 (2014) [CrossRef] [Google Scholar]
  47. Neu J. L. et al. Tropospheric ozone variations governed by changes in stratospheric circulation. Nature Geosc. 7 (5) 340 (2014) [CrossRef] [Google Scholar]
  48. Kimeswenger S. et al. The Innsbruck/ESO sky models and telluric correction tools - The possibility of atmospheric monitoring for Čerenkov telescopes Proc. 2nd AtmoHEAD conf., EPJ 89 01001 (2015) [Google Scholar]
  49. Valore L. et al. The ARCADE Raman Lidar system for the Cherenkov Telescope Array, Proc. 34th ICRC (2015) arxiv:1509.02681 [Google Scholar]
  50. Iarlori M. Experience with Raman LIDARs, these proceedings [Google Scholar]
  51. Doro M. et al. Status and motivation of Raman LIDARs development for the CTA Observatory, Proc. 1st AtmoHEAD Conf. (2014) arxiv:1402.0638 [Google Scholar]
  52. Eizmendi M. IFAE-UAB Raman LIDAR Link Budget and Components, Master Thesis UPC & UAB (2011) [Google Scholar]
  53. Fomin V. P. et al. New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method, Astrop. Phys. 2 137 (1994) [Google Scholar]
  54. Prouza M. et al. FRAM The Robotic Telescope for the Monitoring of the Wavelength Dependence of the Extinction: Description of Hardware, Data Analysis, and Results, Adv. in Astron. 2010 849382 (2010) [Google Scholar]
  55. Ebr J. Aerosol measurements with FRAM telescopes, these proceedings [Google Scholar]
  56. Janecek P. CTA FRAM update, these proceedings [Google Scholar]
  57. Adam J. Allsky Cameras and Cloud Detection, these proceedings [Google Scholar]
  58. Sottile G. et al. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting, Nucl. Phys. B Proc. Supp. 239 258 (2013) arxiv:1305.2699 [NASA ADS] [CrossRef] [Google Scholar]
  59. Maccarone M. C. Auxiliary instruments for the absolute calibration of the ASTRI SST-2M prototype for the Cherenkov Telescope Array, Proc. SPIE Astron. Tel. +Instr. #9149-44 (2014) [Google Scholar]
  60. Stepanik S. Atmospheric monitoring using Cherenkov Transparency Coefficient, these proceedings [Google Scholar]
  61. Aleksić J. et al. Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes, A&A 540 A69 (2012) arxiv:1109.6124 [Google Scholar]
  62. Acero F. et al. Localizing the VHE -ray source at the Galactic Centre, MNRAS 402 1877 (2010) arxiv:0911.1912 [NASA ADS] [CrossRef] [Google Scholar]
  63. Mandát D. All Sky Camera for CTA Site characterization, these proceedings [Google Scholar]
  64. Münkel C. et al. Retrieval of mixing height and dust concentration with lidar ceilometer, Boundary-Layer Meteorol. 124 117 (2007) [CrossRef] [Google Scholar]
  65. Mandát D. et al. All Sky Camera instrument for night sky monitoring, Proc. 1St AtmoHEAD Conf. (2014) arxiv:1402.4762 [Google Scholar]
  66. Nemiroff R. J. et al. Educational Aspects of the CONCAM Sky Monitoring Project, AAS Abs. 32 #120.04 (2000) [Google Scholar]
  67. Smith R. et al. The Tololo All Sky Camera, Sci. Detect. f. Astron., Astr. & Space Sc. Lib. 300 379 (2004) [Google Scholar]
  68. Doro M. et al. Strategy implementation for the CTA Atmospheric monitoring program, Proc. 2nd Atmo-HEAD Conf., EPJ 89 02005 (2014) [Google Scholar]
  69. Heck D. et al. CORSIKA: An Air Shower Simulation Program, Astr. Src Code Libr. ascl:1202.006 (2012) [Google Scholar]
  70. Kertzman M. P. & Sembroski G. H. Computer simulation methods for investigating the detection characteristics of TeV air Cherenkov telescopes, NIM A 343 629 (1994) [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.