Open Access
EPJ Web Conf.
Volume 144, 2017
Atmospheric Monitoring for High Energy Astroparticle Detectors (AtmoHEAD) 2016
Article Number 01010
Number of page(s) 4
Published online 17 May 2017
  1. M. Actis et al., Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for groundbased high-energy gamma-ray astronomy, Exp. Astron. 32, 193 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  2. C. Fruck et al., A novel LIDAR-based Atmospheric Calibration Method for Improving the Data Analysis of MAGIC, Proc. 33rd ICRC 1054 (2013), arXiv:1403.3591 [Google Scholar]
  3. M. Gaug et al., Atmospheric Monitoring for the MAGIC Telescopes. Proc. 1st AtmoHEAD Conf. (2014). [Google Scholar]
  4. C. Fruck & M. Gaug, Atmospheric monitoring in MAGIC and data corrections, Proc. 2nd AtmoHEAD Conf., EPJ 89 02003 (2015). [Google Scholar]
  5. G. Lombardi et al., El Roque de Los Muchachos Site Characteristics. II. Analysis of Wind, Relative Humidity, and Air Pressure. PASP 119 292 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  6. G. Lombardi et al., El Roque de Los Muchachos site characteristics. III. Analysis of atmospheric dust and aerosol extinction A&A 483 651 (2008). [Google Scholar]
  7. C. Muñoz-Tuñón et al., Night-time image quality at Roque de los Muchachos Observatory. Astron. Astrop. Suppl. Ser. 125 (1) 183 (1997). [Google Scholar]
  8. A. García-Gil et al., Atmosphere Extinction at the ORM on La Palma: A 20 yr Statistical Database Gathered at the Carlsberg Meridian Telescope. PASP 122 1109 (2010). [CrossRef] [Google Scholar]
  9. B. García-Lorenzo et al. Infrared astronomical characteristics of the Roque de los Muchachos Observatory: precipitable water vapour statistics MNRAS 405 (4) 2683 (2010). [Google Scholar]
  10. M. Sicard et al., Results of site testing using an aerosol, backscatter lidar at the Roque de los Muchachos Observatory MNRAS 405 (1) 129 (2010). [Google Scholar]
  11. A. M. Varela et al., Astronomical site selection: on the use of satellite data for aerosol content monitoring MNRAS 391 (2) 507 (2008). [CrossRef] [Google Scholar]
  12. E. Palmen & C. W. Newton. Atmospheric Circulation Systems - Their Structure and Physical Interpretation Intern. Geophys. Ser. 13 Acad. Press (1969). [Google Scholar]
  13. J. Carrillo et al., Characterization of the marine boundary layer and the trade-wind inversion over the sub-tropical North Atlantic Boundary-Layer Meteor. 158 (2) 311 (2016). [CrossRef] [Google Scholar]
  14. T. Hassan et al., Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array, subm. to Astrop. Phys. (2017). [Google Scholar]
  15. M. Gaug, CTA Atmospheric Calibration, these proc. [Google Scholar]
  16. W. C. Skamarock et al., A Description of the Advanced Research WRF NCAR/TN-468+STR (2008). [Google Scholar]
  17. J. Marín et al., Density profile characterization and modeling at Paranal and Armazones 2k sites, these proc. [Google Scholar]
  18. E. Cuevas et al., Surface O3 characterization in the sub- tropical North Atlantic troposphere, Atmos. Chem. Phys. 13 1973 (2013). [Google Scholar]
  19. J. J. Remedios et al., MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets Atm. Chem. Phys. Disc. 7 9973 (2007). [CrossRef] [Google Scholar]
  20. J. M. Picone et al., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res.: Space Phys. 107 (A12) SIA 15 1 (2002). [Google Scholar]
  21. M. J. Mahoney. A discussion of various measures of altitude, NASA Jet Propulsion Laboratory, (2001). [Google Scholar]
  22. J. J. Rodriguez-Franco & E. Cuevas, Characteristics of the subtropical tropopause region based on longterm highly resolved sonde records over Tenerife. J. Geophys. Res.: Atmospheres 118 (19) 10754 (2013). [CrossRef] [Google Scholar]
  23. C. Fruck et al., Characterizing the atmosphere over the MAGIC site, analyzing LIDAR data with a novel signal inversion algorithm, in preparation. [Google Scholar]
  24. M. Vrastil et al., Overview of Atmospheric Simulation Efforts in CTA, these proc.. [Google Scholar]
  25. S. Rodríguez et al., Atmospheric nanoparticle observations in the low free troposphere during upward orographic flows at Izaña Mountain Observatory Atmos. Phys. Chem. 9 6319 (2009). [CrossRef] [Google Scholar]
  26. H. Maring et al., Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izaña, Tenerife, Canary Islands, during July 1995, J. Geophys. Res. 105 14677 (2000). [Google Scholar]
  27. E. Andrews et al. Climatology of aerosol radiative properties in the free troposphere Atmosph. Res. 102 365 (2011). [Google Scholar]
  28. D. R. Collins et al. In situ aerosol-size distributions and clear-column radiative closure during ACE-2 Tellus 52B 498 (2000). [CrossRef] [Google Scholar]
  29. S. Rodríguez et al. Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer Atmos. Chem. Phys. Disc. 11 8841 (2011). [CrossRef] [Google Scholar]
  30. D. Whittet et al., The extinction properties of Sahara dust over La Palma Vistas in Astronomy 30 135 (1987). [Google Scholar]
  31. A. Ansmann & D. Müller, LIDAR Range-Resolved Optical Remote Sensing of the Atmosphere, p. 112, Springer, Berlin (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.