Open Access
Issue
EPJ Web Conf.
Volume 148, 2017
5th course of the MRS-EMRS “Materials for Energy and Sustainability” and 3rd course of the “EPS-SIF International School on Energy
Article Number 00010
Number of page(s) 11
DOI https://doi.org/10.1051/epjconf/201714800010
Published online 24 July 2017
  1. Rowe D. M., “Thermoelectric Waste Heat Recovery as a renewable energy source”, Int. J. Innov. Energy Syst. Power, 1 (2006) 13. [Google Scholar]
  2. Seebeck T., “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz”, Abh. K. Preuss. Akad. Wiss. Berlin (1822) 265. [Google Scholar]
  3. Ørsted H. C., “Nouvelles experiences de M. Seebeck sur les actions électro-magnetiques”, Ann. Chim. Phys., 22 (1823) 375. [Google Scholar]
  4. Peltier J. C. A., “Nouvelles expériences sur la caloricité des courans électriques”, Ann. Chim. Phys., 2 (1834) 371. [Google Scholar]
  5. Lenz E., “Einige Versuche im Gebiete des Galvanismus”, Ann. Phys. (Leipzig), 120 (1838) 342, DOI: 10.1002/andp.18381200612. [CrossRef] [Google Scholar]
  6. Altenkirch E., “Über den Nutzeffekt der Thermosäule”, Phys. Z., 10 (1909) 560. [Google Scholar]
  7. Altenkirch E., “Elektrothermische Kälteerzeugung und reversible elektrische Heizung”, Phys. Z., 12 (1911) 920. [Google Scholar]
  8. Ioffe A. F., Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, Ltd., London) 1957. [Google Scholar]
  9. Rowe D. M. (Editor), Thermoelectrics Handbook. Macro to Nano (CRC/Taylor & Francis, Boca Raton, 2006). [Google Scholar]
  10. Guzzella L., “Cohyb - Customized Hybrid Powertrains”, in CCEM Annual Activity Report 2013 (Competence Center Energy and Mobility (ccem.ch), Paul Scherrer Institut, Villigen (CH)) 2014, pp. 26–29. [Google Scholar]
  11. Heel A. and Populoh S., “HITTEC - High Temperature Thermoelectric Converter for Electricity Generation in a SOFC System”, in CCEM Annual Activity Report 2015 (Competence Center Energy and Mobility (ccem.ch), Paul Scherrer Institut, Villigen (CH)) 2016, pp. 17–19. [Google Scholar]
  12. Tomes P., Trottmann M., Suter C., Aguirre M. H., Steinfeld A., Haueter P. and Weidenkaff A., “Thermoelectric Oxide Modules (TOMs) for the Direct Conversion of Simulated Solar Radiation into Electrical Energy”, Materials, 3 (2010) 2801, DOI: 10.3390/ma3042801. [CrossRef] [Google Scholar]
  13. Tomes P., Suter C., Trottmann M., Steinfeld A. and Weidenkaff A., “Thermoelectric oxide modules tested in a solar cavity-receiver”, J. Mater. Res., 26 (2011) 1975, DOI: 10.1557/jmr.2011.125. [Google Scholar]
  14. Suter C., Tomeš P., Weidenkaff A. and Steinfeld A., “A solar cavity-receiver packed with an array of thermoelectric converter modules”, Sol. Energy, 85 (2011) 1511, DOI: 10.1016/j.solener.2011.04.008. [CrossRef] [Google Scholar]
  15. Slack G., “New Materials and Performance Limits for Thermoelectric Cooling”, in CRC Handbook of Thermoelectrics/CRC handbook of thermoelectrics, edited by Rowe D. M. (CRC Press, Boca Raton, FL) 1995, pp. 407–440. [Google Scholar]
  16. Xie W., He J., Kang H. J., Tang X., Zhu S., Laver M., Wang S., Copley J. R. D., Brown C. M., Zhang Q. and Tritt T. M., “Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites”, Nano Lett., 10 (2010) 3283. [CrossRef] [PubMed] [Google Scholar]
  17. Venkatasubramanian R., Siivola E., Colpitts T. and O’Quinn B., “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature, 413 (2001) 597, DOI: 10.1038/35098012. [CrossRef] [PubMed] [Google Scholar]
  18. Lu X. and Morelli D. T., “Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite”, Magn. Res. Chem., 3 (2013) 129, DOI: 10.1557/mrc.2013.26. [Google Scholar]
  19. Zhang R.-Z., Wan C.-L., Wang Y.-F. and Koumoto K., “Titanium sulphene: twodimensional confinement of electrons and phonons giving rise to improved thermoelectric performance”, Phys. Chem. Chem. Phys., 14 (2012) 15641, DOI: 10.1039/c2cp42949g. [CrossRef] [PubMed] [Google Scholar]
  20. Tritt T. M. and Subramanian M. A., “Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View”, MRS Bull., 31 (2006) 188, DOI: 10.1557/mrs2006.44. [CrossRef] [Google Scholar]
  21. Eilertsen J., Surace Y., Balog S., Sagarna L., Rogl G., Horky J., Trottmann M., Rogl P., Subramanian M. A. and Weidenkaff A., “From Occupied Voids to Nanoprecipitates: Synthesis of Skutterudite Nanocomposites in situ”, Z. Anorg. Allg. Chem., 641 (2015) 1495, DOI: 10.1002/zaac.201500137. [CrossRef] [Google Scholar]
  22. Gałązka K., Populoh S., Xie W., Yoon S., Saucke G., Hulliger J. and Weidenkaff A., “Improved thermoelectric performance of (Zr0.3Hf0.7) NiSn half-Heusler compounds by Ta substitution”, J. Appl. Phys., 115 (2014) 183704. [CrossRef] [Google Scholar]
  23. Zeier W. G., Schmitt J., Hautier G., Aydemir U., Gibbs Z. M., Felser C. and Snyder G. J., “Engineering half-Heusler thermoelectric materials using Zintl chemistry”, Nat. Rev. Mater., 1 (2016) 16032, DOI: 10.1038/natrevmats.2016.32. [CrossRef] [Google Scholar]
  24. Terasaki I., Sasago Y. and Uchinokura K., “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B, 56 (1997) R12685, DOI: 10.1103/PhysRevB.56.R12685. [CrossRef] [Google Scholar]
  25. Terasaki I., Iwakawa M., Nakano T., Tsukuda A. and Kobayashi W., “Novel thermoelectric properties of complex transition-metal oxides”, Dalton Trans., 39 (2010) 1005, DOI: 10.1039/B914661j. [CrossRef] [PubMed] [Google Scholar]
  26. Hashimoto H., Kusunose T. and Sekino T., “Influence of ionic sizes of rare earths on thermoelectric properties of perovskite-type rare earth cobalt oxides RCoO3 (R=Pr, Nd, Tb, Dy)”, J. Alloys Compd., 484 (2009) 246. [CrossRef] [Google Scholar]
  27. Weidenkaff A., Robert R., Aguirre M. H., Bocher L., Lippert T. and Canulescu S., “Development of thermoelectric oxides for renewable energy conversion technologies”, Renew. Energy, 33 (2008) 342, DOI: 10.1016/j.renene.2007.05.032. [CrossRef] [Google Scholar]
  28. Weidenkaff A., Robert R., Aguirre M. H., Bocher L. and Schlapbach L., “Nanostructured thermoelectric oxides with low thermal conductivity”, Phys. Status Solidi Rapid Res. Lett., 1 (2007) 247, DOI: 10.1002/pssr.200701185. [CrossRef] [Google Scholar]
  29. Koumoto K., Terasaki I. and Funahashi R., “Complex Oxide Materials for Potential Thermoelectric Applications”, MRS Bull., 31 (2006) 206. [CrossRef] [Google Scholar]
  30. Bocher L., Aguirre M. H., Logvinovich D., Shkabko A., Robert R., Trottmann M. and Weidenkaff A., “CaMn(1−x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials”, Inorg. Chem., 47 (2008) 8077, DOI: 10.1021/ic800463s. [CrossRef] [PubMed] [Google Scholar]
  31. Maignan A., Hébert S., Pi L., Pelloquin D., Martin C., Michel C., Hervieu M. and Raveau B., “Perovskite manganites and layered cobaltites: potential materials for thermoelectric applications”, Cryst. Eng., 5 (2002) 365, DOI: 10.1016/S1463-0184(02)00048-5. [CrossRef] [Google Scholar]
  32. Fedorov M. I. and Zaitsev V. K., “Thermoelectrics of Transition Metal Silicides”, in Thermoelectrics Handbook: Macro to Nano, edited by Rowe D. M. (CRC/Taylor & Francis, Boca Raton) 2006, pp. 31/1–31/19. [Google Scholar]
  33. Bubnova O., Khan Z. U., Malti A., Braun S., Fahlman M., Berggren M. and Crispin X., “Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)”, Nat. Mater., 10 (2011) 429, DOI: 10.1038/nmat3012. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.