Open Access
EPJ Web Conf.
Volume 148, 2017
5th course of the MRS-EMRS “Materials for Energy and Sustainability” and 3rd course of the “EPS-SIF International School on Energy
Article Number 00014
Number of page(s) 24
Published online 24 July 2017
  1. Py X., Azoumah Y. and Olives R., “Concentrated Solar Power: current technologies, major innovative issues and applicability to West African Countries”, Renew. Sustain. Energy Rev., 18 (2013) 306. [CrossRef] [Google Scholar]
  2. Gil A., Medrano M., Martorell I., Lazaro A., Dolado P., Zalba B. and Cabeza L. F., “State of the art on high temperature thermal energy storage for power generation. Part 1 - concepts, materials and modellization”, Renew. Sustain. Energy Rev., 14 (2010) 31. [CrossRef] [Google Scholar]
  3. Calvet N., Gomez J., Faik A., Roddatis V. V., Meffre A., Glatzmaier G. G., Doppiu S. and Py X., “Compatibility of a post-industrial ceramic with nitrate molten salts, for use as filler materials in a thermocline storage system”, Appl. Energy, 109 (2013) 387. [CrossRef] [Google Scholar]
  4. Burkhardt J. J., Heath G. and Turchi C. S., “Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives”, Environ. Sci. Technol., 45 (2011) 2457. [CrossRef] [PubMed] [Google Scholar]
  5. IEA International Energy Agency, Technology Roadmap: Concentrating Solar Power (OECD/IEA) 2010, [Google Scholar]
  6. Pihl E., Kushnir D., Sanden B. and Johnsson F., “Material constraints for concentrating solar thermal power”, Energy, 44 (2012) 944. [CrossRef] [Google Scholar]
  7. Arthur O. and Karim M. A., “An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications”, Renew. Sustain. Energy Rev., 55 (2016) 739. [CrossRef] [Google Scholar]
  8. Py X., Calvet N., Olives R., Meffre A., Echegut P., Bessada C., Veron E. and Ory S., “Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants”, J. Sol. Energy Eng., 133 (2011) 1. [Google Scholar]
  9. Kere A., Py X., Olivès R., Goetz V., Sadiki N. and Mercier-Allart E., “High temperature thermal energy storage material from vitrified coal-fired power plant Fly-Ash”, Innostock 2012, 12th International Conference on Energy Storage, 16–18 May 2012, Lleida, Spain. [Google Scholar]
  10. Meffre A., Py X., Olives R., Bessada C., Veron E. and Echegut P., “High Temperature Sensible Heat Base Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes”, Int. J. Waste Biomass Valoriz., 6 (2015) 1003. [CrossRef] [Google Scholar]
  11. Kere A., Dejean G., Sadiki N., Olives R., Goetz V., Py X. and Mercier-Allart E., “Vitrified industrial wastes as thermal energy storage materials for high temperature applications”, WasteEng 2012, 4th International Conference on Engineering for Waste and Biomass Valorisation, 10–13 September 2012, Porto, Portugal. [Google Scholar]
  12. Gutierrez A., Miró L., Gil A., Rodríguez-Aseguinolaza J., Barreneche C., Calvet N., Py X., Fernández A. I., Grágeda M., Ushak S. and Cabeza L. F., “Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials”, Renew. Sustain. Energy Rev., 59 (2016) 763. [CrossRef] [Google Scholar]
  13. Meffre A., Tessier-Doyen N., Py X., Huger M. and Calvet N., “Thermomechanical characterization of waste based TESM and assessment of their resistance to thermal cycling up to 1000 °C”, Waste Biomass Valoriz., 7 (2016) 9. [CrossRef] [Google Scholar]
  14. Motte F., Falcoz Q., Veron E. and Py X., “Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes”, Appl. Energy, 155 (2015) 14. [CrossRef] [Google Scholar]
  15. Kere A., Sadiki N., Py X. and Goetz V., “Applicability of thermal energy storage recycled ceramics to high temperature and compressed air operating conditions”, Energy Convers. Manag., 88 (2014) 113. [CrossRef] [Google Scholar]
  16. Lalau Y., Py X., Meffre A. and Olives R., “Comparative LCA between current and alternative waste-based TES for CSP”, Waste Biomass Valoriz., 7 (2016) 1509. [CrossRef] [Google Scholar]
  17. Laing D., Steinmann W. D., Tamme R. and Rishter C, “Solid Media thermal storage for parabolic trough power plants”, Sol. Energy, 80 (2006) 1283. [CrossRef] [Google Scholar]
  18. Jubeh N. M. and Najjar Y. S. H., “Green solution for power generation by adoption of adiabatic CAES system”, Appl. Therm. Eng., 44 (2012) 85. [CrossRef] [Google Scholar]
  19. Miro L., Gasia J. and Cabeza L. F., “Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review”, Appl. Energy, 179 (2016) 284. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.