Open Access
Issue
EPJ Web Conf.
Volume 154, 2017
3rd International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2017)
Article Number 01030
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/201715401030
Published online 29 September 2017
  1. B. Barrett, et al., Prog Part Nucl Phys 69 (2013) 131. [CrossRef]
  2. https://indico.cern.ch/event/609505/contributions/2517689/attachments/1448184/2231965/Mala_Skala_2017_Knapp.pdf
  3. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press), (2000).
  4. D.S. Abrams, S. Lloyd, Phys.Rev.Lett. 83, 5162 (1999). [CrossRef]
  5. A. Aspuru-Guzik, et al, Science 309, 1704 (2005). [CrossRef] [PubMed]
  6. H. Wang, et al, Phys. Chem. Chem. Phys. 10, 5388–5393 (2008). [CrossRef] [PubMed]
  7. J.D. Whitfield, et al, Mol. Phys. 109, 735 (2011). [CrossRef]
  8. L. Veis, J. Pittner, J. Chem. Phys. 133, 194106 (2010). [CrossRef] [PubMed]
  9. P.-O. Löwdin, Phys. Rev. 97, 1474 (1955). [CrossRef] [MathSciNet]
  10. D.J. Thouless, Nucl. Phys. 21, 225 (1960). [CrossRef] [MathSciNet]
  11. J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory, Springer, Berlin, (2007). [CrossRef]
  12. W. Ritz, J. Reine, Angew. Math., 135 (1908) 1–61.
  13. https://quantummechanics.ucsd.edu/ph130a
  14. Q. Chong, J Phys Conf Ser 742 (2016) 012030. [CrossRef]
  15. Sternberget al., Accelerating Full Configuration Interaction Calculations for Nuclear Structure in SC ’08: Proc. of the 2008 ACM/IEEE Conf. on Supercomputing. https://www.osti.gov.
  16. A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Publishing Company, New York, (1989).
  17. G. Hagen, et al, Rep. Prog. Phys. 77, 096302 (2014). [CrossRef]
  18. O. Sinanoğlu (1962) J Chem Phys 36 (3) 706. [CrossRef]
  19. J. Čížek (1966) J Chem Phys 45 (11): 4256. [NASA ADS] [CrossRef]
  20. I. Shavitt, R.J. Bartlett (2009) Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press. ISBN 978-0-521- 81832-2. [CrossRef]
  21. J. Lietz, etal., “Computational Nuclear Physics and Post Hartree-Fock Methods,”, Lecture Notes in Physics (Springer), “An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars”, M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editors, (2016) [arXiv:1611.06765].
  22. P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B): B864–B871, (1964). [CrossRef] [MathSciNet]
  23. W. Kohn, L. J. Sham, Phys. Rev. 140 (4A): A1133–A1138 (1965). [CrossRef] [MathSciNet]
  24. J. Dobaczewski, J Phys Conf Ser 312: 092002(2011). [CrossRef]
  25. R. P. Feynmann, Int J Theor Phys, 21, 6/7, (1982).
  26. B. P. Lanyon, et al, Nat Chem 2, 106–111 (2010). [CrossRef]
  27. D. S. Abrams, S. Lloyd. Phys. Rev. Lett., 81: 3992–3995 (1998). quant-ph/ 9801041. [CrossRef]
  28. J. Gruska: Quantum Computing, Advanced Topics in Computer Science Series, The McGraw-Hill Companies, ISBN 007 709503 0.F (1999).
  29. M. Dobšíček: Quantum computing, phase estimation and applications, Ph.D. thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Computer Science and Engineering, (2008).
  30. L. Veis et al Int J Quantum Chem (2016), 116, 1328–1336. DOI: 10.1002/qua.25176 [CrossRef]
  31. J. Višňák, EPJ Conferences 100, 01008 (2015). [CrossRef] [EDP Sciences]
  32. H. Chernoff, (1952) Ann Math Stat 23 (4): 493–507. [CrossRef] [MathSciNet]
  33. T. Hagerup, C. Rüb, (1990) Inform Process Lett 33 (6): 305. [CrossRef]
  34. F. Nielsen, (2011). arXiv:1102.2684
  35. L. Veis, J. Pittner, J Chem Phys, 140, 214111 (2014). [CrossRef] [PubMed]
  36. A. Yu. Kitaev (1995). arXiv:quant-ph/9511026.
  37. J. Višňák, Quantum chemical algorithms for Quantum Computers, Diploma Thesis, Mathematical-Physical Faculty, Charles University in Prague (In Czech, 2012).
  38. L. Veis, et al, Phys. Rev. A 85, 030304(R) (2012). [CrossRef]
  39. L. Hales, S. Hallgren, Proc. of the 41st An. Sympos. on Foundations of Comp. Sci., p. 515, (2000),
  40. R. Blume-Kohout. arxiv.quant-ph/0611080 (2006).
  41. J. Řeháček, Z. Hradil, M. Ježek, M. (2001). Phys. Rev. A. 63: 040303. [CrossRef]
  42. H. F. Trotter, Proc Am Math Soc 10:545–551 (1959). [CrossRef] [MathSciNet]
  43. P. R. Chernoff, J Funct Anal, 2:238–242 (1968). [CrossRef]
  44. Dobšíček M et al, Quantum Simulat ions: Report, Technical report, Microtechnology and Nanoscience, MC2, Chalmers, S-412 96 Göteborg, Sweden, (2010).
  45. P. Jordan, E. Wigner, Z. Phys., 47, Issue 9–10, pp 631–651 (1928). [CrossRef] [EDP Sciences]
  46. S.B. Bravyi, A.Y. Kitaev, Ann. Phys. 298, Iss. 1, 210–226 (2002). [CrossRef]
  47. D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, M. Troyer, Phys. Rev. A. 90, 022305 (2014). [CrossRef]
  48. D. Poulin, et al, arXiv:1406.4920v1 (2014).
  49. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, (1992). Numerical Recipes in C (2nd ed.). Cambridge University Press. ISBN 0-521-43108-5.
  50. A. Ekstroem et al (2013) Phys Rev Lett 110 192502. [NASA ADS] [CrossRef] [PubMed]
  51. G. Audi et al (2017) Chinese Phys. C 41 030001. [CrossRef]
  52. L. M. Delves (1972) J. Phys. A: Gen. Phys. 5 1123. [CrossRef]
  53. P.-O. Löwdin and Quantum Chemistry Group (1965): Studies in Perturbation Theory. X. Lower Bounds to Energy Eigenvalues in Perturbation-Theory Ground State. Uppsala University, Sweden
  54. F. Vinette, J. Čížek (1991) J Math Phys 32, 3392. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.