Open Access
Issue
EPJ Web Conf.
Volume 154, 2017
3rd International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2017)
Article Number 01030
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/201715401030
Published online 29 September 2017
  1. B. Barrett, et al., Prog Part Nucl Phys 69 (2013) 131. [CrossRef] [Google Scholar]
  2. https://indico.cern.ch/event/609505/contributions/2517689/attachments/1448184/2231965/Mala_Skala_2017_Knapp.pdf [Google Scholar]
  3. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press), (2000). [Google Scholar]
  4. D.S. Abrams, S. Lloyd, Phys.Rev.Lett. 83, 5162 (1999). [CrossRef] [Google Scholar]
  5. A. Aspuru-Guzik, et al, Science 309, 1704 (2005). [CrossRef] [PubMed] [Google Scholar]
  6. H. Wang, et al, Phys. Chem. Chem. Phys. 10, 5388–5393 (2008). [CrossRef] [PubMed] [Google Scholar]
  7. J.D. Whitfield, et al, Mol. Phys. 109, 735 (2011). [CrossRef] [Google Scholar]
  8. L. Veis, J. Pittner, J. Chem. Phys. 133, 194106 (2010). [CrossRef] [PubMed] [Google Scholar]
  9. P.-O. Löwdin, Phys. Rev. 97, 1474 (1955). [CrossRef] [MathSciNet] [Google Scholar]
  10. D.J. Thouless, Nucl. Phys. 21, 225 (1960). [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory, Springer, Berlin, (2007). [CrossRef] [Google Scholar]
  12. W. Ritz, J. Reine, Angew. Math., 135 (1908) 1–61. [Google Scholar]
  13. https://quantummechanics.ucsd.edu/ph130a [Google Scholar]
  14. Q. Chong, J Phys Conf Ser 742 (2016) 012030. [Google Scholar]
  15. Sternberget al., Accelerating Full Configuration Interaction Calculations for Nuclear Structure in SC ’08: Proc. of the 2008 ACM/IEEE Conf. on Supercomputing. https://www.osti.gov. [Google Scholar]
  16. A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Publishing Company, New York, (1989). [Google Scholar]
  17. G. Hagen, et al, Rep. Prog. Phys. 77, 096302 (2014). [CrossRef] [PubMed] [Google Scholar]
  18. O. Sinanoğlu (1962) J Chem Phys 36 (3) 706. [CrossRef] [Google Scholar]
  19. J. Čížek (1966) J Chem Phys 45 (11): 4256. [NASA ADS] [CrossRef] [Google Scholar]
  20. I. Shavitt, R.J. Bartlett (2009) Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press. ISBN 978-0-521- 81832-2. [CrossRef] [Google Scholar]
  21. J. Lietz, etal., “Computational Nuclear Physics and Post Hartree-Fock Methods,”, Lecture Notes in Physics (Springer), “An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars”, M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editors, (2016) [arXiv:1611.06765]. [Google Scholar]
  22. P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B): B864–B871, (1964). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. W. Kohn, L. J. Sham, Phys. Rev. 140 (4A): A1133–A1138 (1965). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Dobaczewski, J Phys Conf Ser 312: 092002(2011). [CrossRef] [Google Scholar]
  25. R. P. Feynmann, Int J Theor Phys, 21, 6/7, (1982). [Google Scholar]
  26. B. P. Lanyon, et al, Nat Chem 2, 106–111 (2010). [CrossRef] [PubMed] [Google Scholar]
  27. D. S. Abrams, S. Lloyd. Phys. Rev. Lett., 81: 3992–3995 (1998). quant-ph/ 9801041. [CrossRef] [Google Scholar]
  28. J. Gruska: Quantum Computing, Advanced Topics in Computer Science Series, The McGraw-Hill Companies, ISBN 007 709503 0.F (1999). [Google Scholar]
  29. M. Dobšíček: Quantum computing, phase estimation and applications, Ph.D. thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Computer Science and Engineering, (2008). [Google Scholar]
  30. L. Veis et al Int J Quantum Chem (2016), 116, 1328–1336. DOI: 10.1002/qua.25176 [CrossRef] [Google Scholar]
  31. J. Višňák, EPJ Conferences 100, 01008 (2015). [CrossRef] [EDP Sciences] [Google Scholar]
  32. H. Chernoff, (1952) Ann Math Stat 23 (4): 493–507. [CrossRef] [MathSciNet] [Google Scholar]
  33. T. Hagerup, C. Rüb, (1990) Inform Process Lett 33 (6): 305. [CrossRef] [Google Scholar]
  34. F. Nielsen, (2011). arXiv:1102.2684 [Google Scholar]
  35. L. Veis, J. Pittner, J Chem Phys, 140, 214111 (2014). [CrossRef] [PubMed] [Google Scholar]
  36. A. Yu. Kitaev (1995). arXiv:quant-ph/9511026. [Google Scholar]
  37. J. Višňák, Quantum chemical algorithms for Quantum Computers, Diploma Thesis, Mathematical-Physical Faculty, Charles University in Prague (In Czech, 2012). [Google Scholar]
  38. L. Veis, et al, Phys. Rev. A 85, 030304(R) (2012). [CrossRef] [Google Scholar]
  39. L. Hales, S. Hallgren, Proc. of the 41st An. Sympos. on Foundations of Comp. Sci., p. 515, (2000), [Google Scholar]
  40. R. Blume-Kohout. arxiv.quant-ph/0611080 (2006). [Google Scholar]
  41. J. Řeháček, Z. Hradil, M. Ježek, M. (2001). Phys. Rev. A. 63: 040303. [CrossRef] [Google Scholar]
  42. H. F. Trotter, Proc Am Math Soc 10:545–551 (1959). [Google Scholar]
  43. P. R. Chernoff, J Funct Anal, 2:238–242 (1968). [CrossRef] [Google Scholar]
  44. Dobšíček M et al, Quantum Simulat ions: Report, Technical report, Microtechnology and Nanoscience, MC2, Chalmers, S-412 96 Göteborg, Sweden, (2010). [Google Scholar]
  45. P. Jordan, E. Wigner, Z. Phys., 47, Issue 9–10, pp 631–651 (1928). [CrossRef] [EDP Sciences] [Google Scholar]
  46. S.B. Bravyi, A.Y. Kitaev, Ann. Phys. 298, Iss. 1, 210–226 (2002). [CrossRef] [Google Scholar]
  47. D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, M. Troyer, Phys. Rev. A. 90, 022305 (2014). [CrossRef] [Google Scholar]
  48. D. Poulin, et al, arXiv:1406.4920v1 (2014). [Google Scholar]
  49. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, (1992). Numerical Recipes in C (2nd ed.). Cambridge University Press. ISBN 0-521-43108-5. [Google Scholar]
  50. A. Ekstroem et al (2013) Phys Rev Lett 110 192502. [Google Scholar]
  51. G. Audi et al (2017) Chinese Phys. C 41 030001. [Google Scholar]
  52. L. M. Delves (1972) J. Phys. A: Gen. Phys. 5 1123. [CrossRef] [Google Scholar]
  53. P.-O. Löwdin and Quantum Chemistry Group (1965): Studies in Perturbation Theory. X. Lower Bounds to Energy Eigenvalues in Perturbation-Theory Ground State. Uppsala University, Sweden [Google Scholar]
  54. F. Vinette, J. Čížek (1991) J Math Phys 32, 3392. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.