Open Access
EPJ Web Conf.
Volume 157, 2017
22 Topical Conference on Radio-Frequency Power in Plasmas
Article Number 02006
Number of page(s) 7
Section Invited Papers
Published online 23 October 2017
  1. ITER Physics Basis, Chapter 6: Plasma auxiliary heating and current drive. Nucl. Fusion, Vol. 39, No. 12, 2496–2539 (1999).
  2. Adam, J. Review of tokamak plasma heating by wave damping in the ion cyclotron range of frequency. Plasma Phys. Control. Fusion 29, 443–472 (1987). [CrossRef]
  3. Porkolab, M. et al. Recent progress in ICRF physics. Plasma Phys. Control. Fusion 40, A35–A52 (1998). [CrossRef]
  4. Noterdaeme, J.-M. et al. Physics studies with the additional heating systems in JET. Fusion Sci. Tech. 53, 1103–1151 (2008). [CrossRef]
  5. Ongena, J. et al., Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors. Plasma Phys. Contr. Fusion 59, 054002 (2017). [CrossRef]
  6. Kazakov, Ye.O. et al., On resonant ICRF absorption in three-ion component plasmas: a new promising tool for fast ion generation. Nucl. Fusion 55, 032001 (2015). [CrossRef]
  7. Kazakov, Ye.O. et al., A new ion-cyclotron range of frequency scenario for bluk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour. Phys. Plasmas 22, 082511 (2015). [CrossRef]
  8. Kazakov, Ye.O. et al., Efficient generation of energetic ions in multi-ion plasmas by radiofrequency heating, Nature Physics (2017), advance online publication; http: //dx.
  9. Kazakov, Ye.O. et al., Study of ICRH scenarios for thermal ion heating in D-T plasmas, Nucl. Fusion 52, 094012 (2012). [CrossRef]
  10. Krasilnikov, A.V. et al., Fundamental ion cyclotron resonance heating of JET deuterium plasmas, Plasma Phys. Control. Fusion 51, 044005 (2009). [CrossRef]
  11. Lerche, E.A. et al., Modelling of D majority ICRH at JET: impact of absorption at the Doppler-shifted resonance. Plasma Phys. Control. Fusion 51, 044006 (2009). [CrossRef]
  12. Kiptily, V.G. et al., Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Contr. Fusion 48, R59–R82 (2006). [CrossRef]
  13. Darrow, D.S. et al., Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR, Nucl. Fusion 36, 509–513 (1996). [CrossRef] [EDP Sciences]
  14. Mantsinen, M.J. et al., Localized bulk electron heating with ICRF mode conversion in the JET tokamak. Nucl. Fusion 44, 33–46 (2004). [CrossRef]
  15. Van Eester, D. et al., JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments. Plasma Phys. Contr. Fusion 51, 044007 (2009). [CrossRef]
  16. Ciric, D. et al., Performance of upgraded JET neutral beam injectors. Fusion Eng. Design 86, 509–512 (2011). [CrossRef]
  17. Nath, D. et al., Thermonuclear Fusion Reactivities for Drifting Tri-Maxwellian Ion Velocity Distributions. J Fusion Energy 32, 457–463 (2013). [CrossRef]
  18. Lamalle, P.U. et al., Expanding the operating space of ICRF on JET with a view to ITER. Nucl. Fusion 46, 391–400 (2006). [CrossRef] [EDP Sciences]
  19. Bilato, R. et al., Simulations of combined neutral beam injection and ion cyclotron heating with the TORIC-SSFPQL package. Nucl. Fusion 51, 103034 (2011). [CrossRef]
  20. Stix, T.H., Fast-wave heating of a two-component plasma. Nucl. Fusion 15, 737–754 (1975). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.