Open Access
Issue
EPJ Web Conf.
Volume 164, 2017
5th International Conference on New Frontiers in Physics
Article Number 01023
Number of page(s) 22
Section Plenary
DOI https://doi.org/10.1051/epjconf/201716401023
Published online 05 December 2017
  1. See, for instance, H. Takesue et al., Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors, Optica 2, 832 (2015), and references therein. [CrossRef]
  2. B. Korzh et al., Provably secure and practical quantum key distribution over 307 km of optical fibre,Nature Photonics 9, 163 (2015), arXiv:1407.7427 [CrossRef]
  3. H.-L. Yin et al.,Measurement device independent quantum key distribution over 404 km optical fibre, arXiv:1606.06821
  4. A. Kellerer, Quantum Telescopes, Astronomy and Geophysics, 55 (3): 3.28 (2014), arXiv:1403.6681 [CrossRef]
  5. A.R. Kurek et al., Quantum Telescopes: feasibility and constraints, Optics Letters 41 (6), 1094 (2016), arXiv:1508.04275 [CrossRef] [PubMed]
  6. See, for instance, on the site of the Austrian Academy of Sciences, Fist Quantum Satellite Successfully Launched, (press release).
  7. Xinhua Insight: China launches first-ever quantum communication satellite, http://news.xinhuanet.com/english/2016-08/16/c-135601064-2.htm
  8. P. Shadbolt, J.C.F. Mathews, A. Laingand J.L. O'Brien, Testing foundations of quantum mechanics with photons, Nature Physics 10, 278 (2014) and arXiv:1501.03713 [CrossRef]
  9. B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015), arXiv:1508.05949 [CrossRef] [PubMed]
  10. B. Hensen et al., Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis, arXiv:1603.05705
  11. See, for instance, M. Van Raamsdonk, Lectures on Gravity and Entanglement, arXiv:1609.00026, and references therein.
  12. J. M. Maldacena, The large n limit of superconformal field theories and Supergravity, hepth/9711200
  13. See, for instance, L. Gonzalez-Mestres, Big Bang, inflation, standard Physics… and the potentialities of new Physics and alternative cosmologies, talk given at the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 0212 (2016), and references therein.
  14. See, for instance, L. Gonzalez-Mestres, Tests and prospects of new physics at very high energy, contribution the 3rd International Conference on New Frontiers in Physics (ICNFP 2014), Kolymbari, Crete, Greece, 28 July - 6 August 2014, EPJ Web of Conferences 95, 05007 (2015), and references therein.
  15. See, for instance, L. Gonzalez-Mestres, Spinorial space-time and the origin of Quantum Mechanics, contribution to the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 05006 (2016), and references therein.
  16. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070, and references therein.
  17. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv:astro-ph/9505117
  18. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017
  19. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00063 (2014), references therein and Post Scriptum to the preprint hal-00983005.
  20. See, for instance, the 1979 Nobel lecture by Abdus Salam, and references therein.
  21. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv:astro-ph/9601090
  22. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 479, and references therein.
  23. L. Gonzalez-Mestres, BICEP2, Planck, spinorial space-time, pre-Big Bang, contribution the 3rd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 23 - 30, 2014, EPJ Web of Conferences 95, 03014 (2015), and references therein.
  24. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein.
  25. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026
  26. L. Gonzalez-Mestres Pre-Big Bang, fundamental Physics and noncyclic cosmologies, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00035 (2014), and references therein. Preprint version at mp_arc 13-18.
  27. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum.
  28. Planck Collaboration, ESA site: http://www.cosmos.esa.int/web/planck
  29. Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Astronomy and Astrophysics 571, A23 (2014), also available at arXiv:1303.5083 [CrossRef]
  30. D. Saadeh et al., How isotropic is the Universe?, Phys. Rev. Lett. 117, 131302 (2016), arXiv:1605.07178, and references therein. [CrossRef] [PubMed]
  31. For an introduction to Gödel-Cohen incompleteness, see for instance J. Steinmetz, An Intuitively Complete Analysis of Godel's Incompleteness, arXiv:1512.03667
  32. J.S. Bell, On The Einstein Podolsky Rosen Paradox, Physics 1, 195 (1964). Available at the address http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
  33. J.S. Bell, The Theory of Local Beables, in Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2004), 52. 1975 CERN preprint CERN preprint TH.2053 available at the address http://cds.cern.ch/record/980036/files/197508125.pdf [CrossRef]
  34. See, for instance, H.M. Wiseman, The Two Bell's Theorems of John Bell, J. Phys. A: Math. Theor. 47 424001 (2014), arXiv:1402.0351 [CrossRef]
  35. See, for instance, S. Boughn, A Modest View of Bell's Theorem, arXiv:1604.08529
  36. R.A. Bertlmann, John Bell and the Nature of the Quantum World, J. Phys. A: Math. Theor. 47, 424007 (2014), arxiv:1411.5322 [CrossRef]
  37. R.A. Bertlmann, Bell's Universe: A Personal Recollection, in Quantum [Un]Speakables II: Half a Century of Bell's Theorem, eds. R. A. Bertlmann and A. Zeilinger, Springer 2016, arxiv:1605.08081
  38. A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935). [CrossRef]
  39. In his 1964 article, John Bell cites: Albert Einstein, Philosopher Scientist (Edited by P.A. Schilp), Library of Living Philosophers, Evanston, Illinois (1949), p.85.
  40. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 2004. [CrossRef]
  41. G. Lochak, Has Bell's inequality a general meaning for hidden variable theories?, Foundations of Physics 6, 173 (1976). [CrossRef]
  42. J.F. Clauser, M.A. Horne, A. Shimony, A. and R.A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969). Available at the address https://www.researchgate.net/publication/228109500 [CrossRef]
  43. See, also, A. Asin and L. Masanes, Certified randomness in quantum physics, Nature 540, 213 (2016), and references therein. [CrossRef] [PubMed]
  44. M. Giustina et al., A significant-loophole-free test of Bell's theorem with entangled photons, Phys. Rev. Lett. 115, 250401 (2015), arXiv:1511.03190 [CrossRef] [PubMed]
  45. L.K. Shalm et al., A strong loophole-free test of local realism, Phys. Rev. Lett. 115, 250402 (2015), arXiv:1511.03189 [CrossRef] [PubMed]
  46. See, for instance, A. Aspect, Bell's Theorem: The Naive View of an Experimentalist, in Quantum [Un]speakables - From Bell to Quantum information, edited by R. A. Bertlmann and A. Zeilinger, Springer (2002), arxiv:quant-ph/0402001, and references therein.
  47. See, for instance, J-A. Larsson, Loopholes in Bell Inequality Tests of Local Realism,Journal of Physics A 47, 424003 (2014), arXiv: 1407.0363, and references therein.
  48. W. Rosenfeld et al., Event-ready Bell-test using entangled atoms simultaneously closing detection and locality loopholes, arXiv:1611.04604
  49. See, for instance, L.A. Rozema et al., Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements, Phys. Rev. Lett. 109, 100404 (2012), arXiv:1208.0034 [CrossRef] [PubMed]
  50. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschfrift für Physik 43, 172 (1927). [CrossRef]
  51. English translation from W. Heisenbeg, The Physical Content of Quantum Kinematics and Mechanics, in Quantum Theory and Measurement, Edited by J. A. Wheeler and W. H. Zurek, Princeton Univ. Press, 1984.
  52. See, for instance, J. Cen and A. Fring, Complex solitons with real energies, Journal of Physics A: Math. and Theor. 49 365202 (2016], arxiv:1602.05465, and references therein. [CrossRef]
  53. L. Gonzalez-Mestres, Quantum Mechanics and the Spinorial Space-Time, mp-arc15-86
  54. L. Gonzalez-Mestres, Quantum Mechanics, preonic vacuum and space-time contradiction, mp_arc 15-90
  55. L. Gonzalez-Mestres, Quantum Mechanics, space-time, preons and entanglement, mp_arc 15-92
  56. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00047 (2014), and references therein. Preprint version at mp_arc 13-19.
  57. See, also, L. Gonzalez-Mestres, Spinorial Regge trajectories and Hagedorn-like temperatures, presented at ICNFP 2015, EPJ Web of Conferences 126, 05005 (2016).
  58. Pierre Auger Observatory, https://www.auger.org/
  59. The Pierre Auger Collaboration, The Pierre Auger Observatory Upgrade - Preliminary Design Report, arxiv: 1604.03637, and references therein.
  60. The Pierre Auger Collaboration, Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory, Phys. Rev. Lett. 117, 192001 (2016), arxiv:1610.08509 [CrossRef] [PubMed]
  61. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Invisible Universe International Conference, Paris June 29 - July 3, 2009. The arXiv.org version arXiv:0912.0725 includes a relevant Post Scriptum.
  62. L. Gonzalez-Mestres, The present status of Cosmology and new approaches to particles and Cosmos and Value ofH, spinorial space-time and Universe's expansion, ICNFP 2016 Conference.
  63. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146
  64. L. Gonzalez-Mestres, Can matter accelerate the expansion of the Universe? (I) (April 26, 2016), Part of a contribution to the 5th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, July 5 - 15, 2016. Available at mp_arc 16-33.
  65. L. Gonzalez-Mestres, Cosmological implications of a preonic vacuum (I) (August 2, 2016), Part of a contribution to the 5th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, July 5 - 15, 2016. Available at mp_arc 16-62.
  66. G. Lemaître, The Beginning of the World from the Point of View of Quantum Theory, Letter to Nature, Nature 127, 706, 9 May 1931. [NASA ADS] [CrossRef]
  67. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 1333, and references therein.
  68. L.Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein.
  69. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein.
  70. See, for instance, L. Gonzalez-Mestres, Lorentz symmetry violation at Planck scale, cosmology and superluminal particles, talk given at COSMO-97, Ambleside September 15-19 1997, Proceedings edited by L. Rozskowski, World Scientific 1998, arXiv:physics/9712056, references therein and subsequent papers.
  71. See, for instance, the Planck Collaboration, Planck 2015 results. XVI. Isotropy and statistics of the CMB, Astronomy & Astrophysics 594, A16 (2016), arXiv:1506.07135, and references therein. [NASA ADS] [CrossRef] [EDP Sciences]
  72. L. Gonzalez-Mestres, Absence of Greisen-Zatsepin-Kuzmin Cutoff and Stability of Unstable Par-ticles at Very High Energy, as a Consequence of Lorentz Symmetry Violation, Proceedings of the 25th International Cosmic Ray Conference, Potchefstroomse Universiteit 1997, Vol. 6, p. 113. arXiv:physics/9705031.
  73. L. Gonzalez-Mestres, Testing fundamental principles with high-energy cosmic rays, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 390, and references therein.
  74. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, contribution the 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00062 (2014). See also the Post Scriptum to the preprint version, mp_arc 14-31.
  75. A. Watson, High-Energy Cosmic Rays and the Greisen-Zatsepin-Kuzmin Effect, Rept.Prog.Phys. 77 (2014) 036901, arXiv:1310.0325. [CrossRef]
  76. K. Greisen, End to the Cosmic-Ray Spectrum? Phys.Rev.Lett. 16 (1966), 748, http://physics.princeton.edu/ mcdonald/examples/EP/greisens-prl-16-748-66.pdfk [NASA ADS] [CrossRef]
  77. G.T. Zatsepin and V.A. Kuz'min, Upper Limit on the Spectrum of Cosmic Rays, JETP Letters 4,78
  78. The Telescope Array Collaboration, Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, Astrophysical Journal 790, L21 (2014), arXiv:1404.5890. [NASA ADS] [CrossRef]
  79. The Telescope Array Collaboration, The Energy Spectrum of Cosmic Rays above 1017.2 eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years, Astropart.Phys. 80, 131 (2016), arXiv:1511.07510, and references therein. [CrossRef]
  80. The Pierre Auger Observatory, Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°, arXiv:1411.6953, and references therein.
  81. The Pierre Auger Collaboration, Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory, arXiv:1611.06812, and references therein.
  82. R. Abbasi et al., Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays, Proceedings of the UHECR workshop, Springdale, USA, 2014, arXiv:1503.07540, and references therein.
  83. Telescope Array and Pierre Auger Collaborations, Pierre Auger Observatory and Telescope Array: Joint Contributions to the 34th International Cosmic Ray Conference (ICRC 2015), arXiv:1511.02103, and references therein.
  84. See, for instance, The Pierre Auger Collaboration, Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory, Phys. Rev. Lett. 117, 192001 (2016), arXiv:1610.08509, and references therein. [CrossRef] [PubMed]
  85. J. Wess, q-Deformed Heisemberg Algebras, Lectures given at the 38. Internationale Universitätswochen für Kern-und Teilchenphysik, Schladming (Austria), January 1999, arXiv:math-ph/9910013, and references therein.
  86. S. Majid and H. Ruegg, Bicrossproduct structure of the Poincaré group and noncommutative geometry, Physics Letters B 334, 348-354 (1994), arXiv:hep-th/9405107arXiv:hep-th/9405107. [CrossRef] [MathSciNet]
  87. A. Connes and J. Lott, Particle models and noncommutative geometry, Nucl. Phys. Proc. Suppl. B 18, 29 (1990), http://deepblue.lib.umich.edu/bitstream/handle/2027.42/29524/0000611.pdf
  88. N.E. Mavromatos and R.J. Szabo, arXiv.org, arXiv:hep-th/9811116
  89. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09, 032 (1999), arXiv:hep-th/9908142. [CrossRef]
  90. S. Hawking, Black hole explosions?, Nature 248, 30 (1974). [NASA ADS] [CrossRef]
  91. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). [NASA ADS] [CrossRef] [PubMed]
  92. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical Implications of the Binary Black-Hole Merger GW150914, The Astrophysical Journal Letters 818, L22 (2016). [NASA ADS] [CrossRef]
  93. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016). [NASA ADS] [CrossRef] [PubMed]
  94. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Binary Black Hole Mergers in the first Advanced LIGO Observing Run, arXiv:1606.04856
  95. The LIGO Scientific Collaboration, http://www.ligo.org/
  96. VIRGO Collaboration, http://www.virgo-gw.eu/
  97. The LIGO Scientific Collaboration, the Virgo Collaboration, The basic physics of the binary black hole merger GW150914, arXiv:1608.01940
  98. ANTARES Collaboration, http://antares.in2p3.fr/
  99. IceCube South Pole Neutrino Observatory, http://icecube.wisc.edu/
  100. ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration, High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, arXiv:1602.05411
  101. T. Jacobson, Introductory Lectures on Black Hole Thermodynamics, 1996 Lectures given at the University of Utrecht.
  102. G. 't Hooft, Introduction to the Theory of Black Holes, 2009 Lectures presented at the Utrecht University, ITP-UU-09/11, SPIN-09/11.
  103. L. Gualtieri and V. Ferrari, Black Holes in general Relativity, Università degli studi di Roma, 2011.
  104. Harvey Reall, Lecture notes on Black Holes (2016), University of Cambridge.
  105. Stanford Encyclopedia of Philosophy, Gödel's Incompleteness Theorems, https://plato.stanford.edu/entries/goedel-incompleteness/
  106. T. Cubitt, D. Perez-Garcia and M. Wolff, Undecidability of the Spectral Gap, Nature 528, 207 (2015), arXiv: 1502.04135. [CrossRef] [PubMed]
  107. T. Cubitt, D. Perez-Garcia and M. Wolff, Undecidability of the Spectral Gap (full version), arXiv:1502.04573.
  108. J. Bausch et al., Size-Driven Quantum Phase Transitions, arXiv:1512.05687.
  109. G. De las Cuevas et al., Fundamental limitations in the purifications of tensor networks, Journal of Mathematical Physics 57, 071902 (2016), arXiv:1512.05709. [CrossRef]
  110. CMS Collaboration, Search for black holes at √s = 13 TeV, http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-15-007. See also [111, 112]
  111. CMS Collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s) = 8 TeV, Phys. Rev. D 91, 052009 (2015), arXiv:1501.04198 [CrossRef]
  112. CMS Collaboration, Search for lepton flavour violating decays of heavy resonances and quantum black holes to an e-mu pair in proton-proton collisions at sqrt(s) = 8 TeV, The European Physical Journal C 76, 317 (2016), arXiv:1604.05239 [CrossRef] [EDP Sciences]
  113. S.J. Devitt, Performing Quantum Computing Experiments in the Cloud, Phys. Rev. A 94, 032329 (2016), arXiv:1605.05709 [CrossRef]
  114. S. Boixo et al., Characterizing Quantum Supremacy in Near-Term Devices, arXiv:1608.00263
  115. See also QiChao Sun et al., Quantum teleportation with independent sources over an optical fibre network, Nature Photonics 10, 671 (2016), arXiv: 1602.07081, and references therein. [CrossRef]
  116. R. Valivarthi et al.,Quantum teleportation across a metropolitan fibre network, Nature Photonics 10, 676 (2016), arXiv:1605.08814 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.