Open Access
Issue
EPJ Web Conf.
Volume 164, 2017
5th International Conference on New Frontiers in Physics
Article Number 01023
Number of page(s) 22
Section Plenary
DOI https://doi.org/10.1051/epjconf/201716401023
Published online 05 December 2017
  1. See, for instance, H. Takesue et al., Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors, Optica 2, 832 (2015), and references therein. [CrossRef] [Google Scholar]
  2. B. Korzh et al., Provably secure and practical quantum key distribution over 307 km of optical fibre,Nature Photonics 9, 163 (2015), arXiv:1407.7427 [CrossRef] [Google Scholar]
  3. H.-L. Yin et al.,Measurement device independent quantum key distribution over 404 km optical fibre, arXiv:1606.06821 [Google Scholar]
  4. A. Kellerer, Quantum Telescopes, Astronomy and Geophysics, 55 (3): 3.28 (2014), arXiv:1403.6681 [CrossRef] [Google Scholar]
  5. A.R. Kurek et al., Quantum Telescopes: feasibility and constraints, Optics Letters 41 (6), 1094 (2016), arXiv:1508.04275 [CrossRef] [PubMed] [Google Scholar]
  6. See, for instance, on the site of the Austrian Academy of Sciences, Fist Quantum Satellite Successfully Launched, (press release). [Google Scholar]
  7. Xinhua Insight: China launches first-ever quantum communication satellite, http://news.xinhuanet.com/english/2016-08/16/c-135601064-2.htm [Google Scholar]
  8. P. Shadbolt, J.C.F. Mathews, A. Laingand J.L. O'Brien, Testing foundations of quantum mechanics with photons, Nature Physics 10, 278 (2014) and arXiv:1501.03713 [CrossRef] [Google Scholar]
  9. B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015), arXiv:1508.05949 [CrossRef] [PubMed] [Google Scholar]
  10. B. Hensen et al., Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis, arXiv:1603.05705 [Google Scholar]
  11. See, for instance, M. Van Raamsdonk, Lectures on Gravity and Entanglement, arXiv:1609.00026, and references therein. [Google Scholar]
  12. J. M. Maldacena, The large n limit of superconformal field theories and Supergravity, hepth/9711200 [Google Scholar]
  13. See, for instance, L. Gonzalez-Mestres, Big Bang, inflation, standard Physics… and the potentialities of new Physics and alternative cosmologies, talk given at the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 0212 (2016), and references therein. [Google Scholar]
  14. See, for instance, L. Gonzalez-Mestres, Tests and prospects of new physics at very high energy, contribution the 3rd International Conference on New Frontiers in Physics (ICNFP 2014), Kolymbari, Crete, Greece, 28 July - 6 August 2014, EPJ Web of Conferences 95, 05007 (2015), and references therein. [Google Scholar]
  15. See, for instance, L. Gonzalez-Mestres, Spinorial space-time and the origin of Quantum Mechanics, contribution to the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 05006 (2016), and references therein. [Google Scholar]
  16. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070, and references therein. [Google Scholar]
  17. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv:astro-ph/9505117 [Google Scholar]
  18. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017 [Google Scholar]
  19. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00063 (2014), references therein and Post Scriptum to the preprint hal-00983005. [Google Scholar]
  20. See, for instance, the 1979 Nobel lecture by Abdus Salam, and references therein. [Google Scholar]
  21. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv:astro-ph/9601090 [Google Scholar]
  22. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 479, and references therein. [Google Scholar]
  23. L. Gonzalez-Mestres, BICEP2, Planck, spinorial space-time, pre-Big Bang, contribution the 3rd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 23 - 30, 2014, EPJ Web of Conferences 95, 03014 (2015), and references therein. [Google Scholar]
  24. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  25. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026 [Google Scholar]
  26. L. Gonzalez-Mestres Pre-Big Bang, fundamental Physics and noncyclic cosmologies, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00035 (2014), and references therein. Preprint version at mp_arc 13-18. [Google Scholar]
  27. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum. [Google Scholar]
  28. Planck Collaboration, ESA site: http://www.cosmos.esa.int/web/planck [Google Scholar]
  29. Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Astronomy and Astrophysics 571, A23 (2014), also available at arXiv:1303.5083 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  30. D. Saadeh et al., How isotropic is the Universe?, Phys. Rev. Lett. 117, 131302 (2016), arXiv:1605.07178, and references therein. [CrossRef] [PubMed] [Google Scholar]
  31. For an introduction to Gödel-Cohen incompleteness, see for instance J. Steinmetz, An Intuitively Complete Analysis of Godel's Incompleteness, arXiv:1512.03667 [Google Scholar]
  32. J.S. Bell, On The Einstein Podolsky Rosen Paradox, Physics 1, 195 (1964). Available at the address http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf [Google Scholar]
  33. J.S. Bell, The Theory of Local Beables, in Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2004), 52. 1975 CERN preprint CERN preprint TH.2053 available at the address http://cds.cern.ch/record/980036/files/197508125.pdf [CrossRef] [Google Scholar]
  34. See, for instance, H.M. Wiseman, The Two Bell's Theorems of John Bell, J. Phys. A: Math. Theor. 47 424001 (2014), arXiv:1402.0351 [CrossRef] [Google Scholar]
  35. See, for instance, S. Boughn, A Modest View of Bell's Theorem, arXiv:1604.08529 [Google Scholar]
  36. R.A. Bertlmann, John Bell and the Nature of the Quantum World, J. Phys. A: Math. Theor. 47, 424007 (2014), arxiv:1411.5322 [CrossRef] [Google Scholar]
  37. R.A. Bertlmann, Bell's Universe: A Personal Recollection, in Quantum [Un]Speakables II: Half a Century of Bell's Theorem, eds. R. A. Bertlmann and A. Zeilinger, Springer 2016, arxiv:1605.08081 [Google Scholar]
  38. A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935). [CrossRef] [Google Scholar]
  39. In his 1964 article, John Bell cites: Albert Einstein, Philosopher Scientist (Edited by P.A. Schilp), Library of Living Philosophers, Evanston, Illinois (1949), p.85. [Google Scholar]
  40. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 2004. [CrossRef] [Google Scholar]
  41. G. Lochak, Has Bell's inequality a general meaning for hidden variable theories?, Foundations of Physics 6, 173 (1976). [CrossRef] [Google Scholar]
  42. J.F. Clauser, M.A. Horne, A. Shimony, A. and R.A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969). Available at the address https://www.researchgate.net/publication/228109500 [CrossRef] [Google Scholar]
  43. See, also, A. Asin and L. Masanes, Certified randomness in quantum physics, Nature 540, 213 (2016), and references therein. [CrossRef] [PubMed] [Google Scholar]
  44. M. Giustina et al., A significant-loophole-free test of Bell's theorem with entangled photons, Phys. Rev. Lett. 115, 250401 (2015), arXiv:1511.03190 [CrossRef] [PubMed] [Google Scholar]
  45. L.K. Shalm et al., A strong loophole-free test of local realism, Phys. Rev. Lett. 115, 250402 (2015), arXiv:1511.03189 [CrossRef] [PubMed] [Google Scholar]
  46. See, for instance, A. Aspect, Bell's Theorem: The Naive View of an Experimentalist, in Quantum [Un]speakables - From Bell to Quantum information, edited by R. A. Bertlmann and A. Zeilinger, Springer (2002), arxiv:quant-ph/0402001, and references therein. [Google Scholar]
  47. See, for instance, J-A. Larsson, Loopholes in Bell Inequality Tests of Local Realism,Journal of Physics A 47, 424003 (2014), arXiv: 1407.0363, and references therein. [Google Scholar]
  48. W. Rosenfeld et al., Event-ready Bell-test using entangled atoms simultaneously closing detection and locality loopholes, arXiv:1611.04604 [Google Scholar]
  49. See, for instance, L.A. Rozema et al., Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements, Phys. Rev. Lett. 109, 100404 (2012), arXiv:1208.0034 [CrossRef] [PubMed] [Google Scholar]
  50. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschfrift für Physik 43, 172 (1927). [CrossRef] [Google Scholar]
  51. English translation from W. Heisenbeg, The Physical Content of Quantum Kinematics and Mechanics, in Quantum Theory and Measurement, Edited by J. A. Wheeler and W. H. Zurek, Princeton Univ. Press, 1984. [Google Scholar]
  52. See, for instance, J. Cen and A. Fring, Complex solitons with real energies, Journal of Physics A: Math. and Theor. 49 365202 (2016], arxiv:1602.05465, and references therein. [CrossRef] [Google Scholar]
  53. L. Gonzalez-Mestres, Quantum Mechanics and the Spinorial Space-Time, mp-arc15-86 [Google Scholar]
  54. L. Gonzalez-Mestres, Quantum Mechanics, preonic vacuum and space-time contradiction, mp_arc 15-90 [Google Scholar]
  55. L. Gonzalez-Mestres, Quantum Mechanics, space-time, preons and entanglement, mp_arc 15-92 [Google Scholar]
  56. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00047 (2014), and references therein. Preprint version at mp_arc 13-19. [Google Scholar]
  57. See, also, L. Gonzalez-Mestres, Spinorial Regge trajectories and Hagedorn-like temperatures, presented at ICNFP 2015, EPJ Web of Conferences 126, 05005 (2016). [Google Scholar]
  58. Pierre Auger Observatory, https://www.auger.org/ [Google Scholar]
  59. The Pierre Auger Collaboration, The Pierre Auger Observatory Upgrade - Preliminary Design Report, arxiv: 1604.03637, and references therein. [Google Scholar]
  60. The Pierre Auger Collaboration, Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory, Phys. Rev. Lett. 117, 192001 (2016), arxiv:1610.08509 [CrossRef] [PubMed] [Google Scholar]
  61. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Invisible Universe International Conference, Paris June 29 - July 3, 2009. The arXiv.org version arXiv:0912.0725 includes a relevant Post Scriptum. [Google Scholar]
  62. L. Gonzalez-Mestres, The present status of Cosmology and new approaches to particles and Cosmos and Value ofH, spinorial space-time and Universe's expansion, ICNFP 2016 Conference. [Google Scholar]
  63. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146 [Google Scholar]
  64. L. Gonzalez-Mestres, Can matter accelerate the expansion of the Universe? (I) (April 26, 2016), Part of a contribution to the 5th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, July 5 - 15, 2016. Available at mp_arc 16-33. [Google Scholar]
  65. L. Gonzalez-Mestres, Cosmological implications of a preonic vacuum (I) (August 2, 2016), Part of a contribution to the 5th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, July 5 - 15, 2016. Available at mp_arc 16-62. [Google Scholar]
  66. G. Lemaître, The Beginning of the World from the Point of View of Quantum Theory, Letter to Nature, Nature 127, 706, 9 May 1931. [NASA ADS] [CrossRef] [Google Scholar]
  67. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 1333, and references therein. [Google Scholar]
  68. L.Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  69. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  70. See, for instance, L. Gonzalez-Mestres, Lorentz symmetry violation at Planck scale, cosmology and superluminal particles, talk given at COSMO-97, Ambleside September 15-19 1997, Proceedings edited by L. Rozskowski, World Scientific 1998, arXiv:physics/9712056, references therein and subsequent papers. [Google Scholar]
  71. See, for instance, the Planck Collaboration, Planck 2015 results. XVI. Isotropy and statistics of the CMB, Astronomy & Astrophysics 594, A16 (2016), arXiv:1506.07135, and references therein. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  72. L. Gonzalez-Mestres, Absence of Greisen-Zatsepin-Kuzmin Cutoff and Stability of Unstable Par-ticles at Very High Energy, as a Consequence of Lorentz Symmetry Violation, Proceedings of the 25th International Cosmic Ray Conference, Potchefstroomse Universiteit 1997, Vol. 6, p. 113. arXiv:physics/9705031. [Google Scholar]
  73. L. Gonzalez-Mestres, Testing fundamental principles with high-energy cosmic rays, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 390, and references therein. [Google Scholar]
  74. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, contribution the 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00062 (2014). See also the Post Scriptum to the preprint version, mp_arc 14-31. [Google Scholar]
  75. A. Watson, High-Energy Cosmic Rays and the Greisen-Zatsepin-Kuzmin Effect, Rept.Prog.Phys. 77 (2014) 036901, arXiv:1310.0325. [CrossRef] [Google Scholar]
  76. K. Greisen, End to the Cosmic-Ray Spectrum? Phys.Rev.Lett. 16 (1966), 748, http://physics.princeton.edu/ mcdonald/examples/EP/greisens-prl-16-748-66.pdfk [NASA ADS] [CrossRef] [Google Scholar]
  77. G.T. Zatsepin and V.A. Kuz'min, Upper Limit on the Spectrum of Cosmic Rays, JETP Letters 4,78 [Google Scholar]
  78. The Telescope Array Collaboration, Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, Astrophysical Journal 790, L21 (2014), arXiv:1404.5890. [NASA ADS] [CrossRef] [Google Scholar]
  79. The Telescope Array Collaboration, The Energy Spectrum of Cosmic Rays above 1017.2 eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years, Astropart.Phys. 80, 131 (2016), arXiv:1511.07510, and references therein. [CrossRef] [Google Scholar]
  80. The Pierre Auger Observatory, Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°, arXiv:1411.6953, and references therein. [Google Scholar]
  81. The Pierre Auger Collaboration, Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory, arXiv:1611.06812, and references therein. [Google Scholar]
  82. R. Abbasi et al., Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays, Proceedings of the UHECR workshop, Springdale, USA, 2014, arXiv:1503.07540, and references therein. [Google Scholar]
  83. Telescope Array and Pierre Auger Collaborations, Pierre Auger Observatory and Telescope Array: Joint Contributions to the 34th International Cosmic Ray Conference (ICRC 2015), arXiv:1511.02103, and references therein. [Google Scholar]
  84. See, for instance, The Pierre Auger Collaboration, Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory, Phys. Rev. Lett. 117, 192001 (2016), arXiv:1610.08509, and references therein. [CrossRef] [PubMed] [Google Scholar]
  85. J. Wess, q-Deformed Heisemberg Algebras, Lectures given at the 38. Internationale Universitätswochen für Kern-und Teilchenphysik, Schladming (Austria), January 1999, arXiv:math-ph/9910013, and references therein. [Google Scholar]
  86. S. Majid and H. Ruegg, Bicrossproduct structure of the Poincaré group and noncommutative geometry, Physics Letters B 334, 348-354 (1994), arXiv:hep-th/9405107arXiv:hep-th/9405107. [CrossRef] [MathSciNet] [Google Scholar]
  87. A. Connes and J. Lott, Particle models and noncommutative geometry, Nucl. Phys. Proc. Suppl. B 18, 29 (1990), http://deepblue.lib.umich.edu/bitstream/handle/2027.42/29524/0000611.pdf [Google Scholar]
  88. N.E. Mavromatos and R.J. Szabo, arXiv.org, arXiv:hep-th/9811116 [Google Scholar]
  89. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09, 032 (1999), arXiv:hep-th/9908142. [CrossRef] [Google Scholar]
  90. S. Hawking, Black hole explosions?, Nature 248, 30 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  91. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  92. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical Implications of the Binary Black-Hole Merger GW150914, The Astrophysical Journal Letters 818, L22 (2016). [NASA ADS] [CrossRef] [Google Scholar]
  93. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  94. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Binary Black Hole Mergers in the first Advanced LIGO Observing Run, arXiv:1606.04856 [Google Scholar]
  95. The LIGO Scientific Collaboration, http://www.ligo.org/ [Google Scholar]
  96. VIRGO Collaboration, http://www.virgo-gw.eu/ [Google Scholar]
  97. The LIGO Scientific Collaboration, the Virgo Collaboration, The basic physics of the binary black hole merger GW150914, arXiv:1608.01940 [Google Scholar]
  98. ANTARES Collaboration, http://antares.in2p3.fr/ [Google Scholar]
  99. IceCube South Pole Neutrino Observatory, http://icecube.wisc.edu/ [Google Scholar]
  100. ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration, High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, arXiv:1602.05411 [Google Scholar]
  101. T. Jacobson, Introductory Lectures on Black Hole Thermodynamics, 1996 Lectures given at the University of Utrecht. [Google Scholar]
  102. G. 't Hooft, Introduction to the Theory of Black Holes, 2009 Lectures presented at the Utrecht University, ITP-UU-09/11, SPIN-09/11. [Google Scholar]
  103. L. Gualtieri and V. Ferrari, Black Holes in general Relativity, Università degli studi di Roma, 2011. [Google Scholar]
  104. Harvey Reall, Lecture notes on Black Holes (2016), University of Cambridge. [Google Scholar]
  105. Stanford Encyclopedia of Philosophy, Gödel's Incompleteness Theorems, https://plato.stanford.edu/entries/goedel-incompleteness/ [Google Scholar]
  106. T. Cubitt, D. Perez-Garcia and M. Wolff, Undecidability of the Spectral Gap, Nature 528, 207 (2015), arXiv: 1502.04135. [CrossRef] [PubMed] [Google Scholar]
  107. T. Cubitt, D. Perez-Garcia and M. Wolff, Undecidability of the Spectral Gap (full version), arXiv:1502.04573. [Google Scholar]
  108. J. Bausch et al., Size-Driven Quantum Phase Transitions, arXiv:1512.05687. [Google Scholar]
  109. G. De las Cuevas et al., Fundamental limitations in the purifications of tensor networks, Journal of Mathematical Physics 57, 071902 (2016), arXiv:1512.05709. [CrossRef] [Google Scholar]
  110. CMS Collaboration, Search for black holes at √s = 13 TeV, http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-15-007. See also [111, 112] [Google Scholar]
  111. CMS Collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s) = 8 TeV, Phys. Rev. D 91, 052009 (2015), arXiv:1501.04198 [CrossRef] [Google Scholar]
  112. CMS Collaboration, Search for lepton flavour violating decays of heavy resonances and quantum black holes to an e-mu pair in proton-proton collisions at sqrt(s) = 8 TeV, The European Physical Journal C 76, 317 (2016), arXiv:1604.05239 [CrossRef] [EDP Sciences] [Google Scholar]
  113. S.J. Devitt, Performing Quantum Computing Experiments in the Cloud, Phys. Rev. A 94, 032329 (2016), arXiv:1605.05709 [CrossRef] [Google Scholar]
  114. S. Boixo et al., Characterizing Quantum Supremacy in Near-Term Devices, arXiv:1608.00263 [Google Scholar]
  115. See also QiChao Sun et al., Quantum teleportation with independent sources over an optical fibre network, Nature Photonics 10, 671 (2016), arXiv: 1602.07081, and references therein. [CrossRef] [Google Scholar]
  116. R. Valivarthi et al.,Quantum teleportation across a metropolitan fibre network, Nature Photonics 10, 676 (2016), arXiv:1605.08814 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.