Open Access
Issue
EPJ Web Conf.
Volume 164, 2017
5th International Conference on New Frontiers in Physics
Article Number 08010
Number of page(s) 20
Section Poster
DOI https://doi.org/10.1051/epjconf/201716408010
Published online 05 December 2017
  1. See, for instance, J.L. Bernal, L. Verde and A. Riess, The trouble with H0, JCAP 10, 019 (2016), arXiv:1607.05617, and references therein. [Google Scholar]
  2. D. Castelvecchi, Measurement of Universe's expansion rate creates cosmological puzzle, Na-ture News, 11 April 2016, http://www.nature.com/news/measurement-of-universe-s-expansion-rate-creates-cosmological-puzzle-1.19715 [Google Scholar]
  3. A. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophysical Journal 826, 56 (2016),arXiv:1604.01424 [NASA ADS] [CrossRef] [Google Scholar]
  4. See, for instance, http://sci.esa.int/hubble/34007-hubble-instruments/ (European State Agency, ESA). [Google Scholar]
  5. Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, Astronomy & Astrophysics 594, A13 (2016), arXiv:1502.01589 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Wilkinson Microwave Anisotropy Probe, Atacama Cosmology Telescope, South Pole Telescope, Baryon Acoustic Oscillations. [Google Scholar]
  7. The authors refer to C.L. Bennett et al., The 1% Concordance Hubble Constant, APJ 794, 135 (2014), arXiv:1406.1718 [NASA ADS] [CrossRef] [Google Scholar]
  8. See, for instance, C. Conselice et al. The Evolution of Galaxy Number Density at z < 8 and its Implications, APJ 830, 83 (2016), arXiv:1607.03909 [NASA ADS] [CrossRef] [Google Scholar]
  9. G. Lemaître, The Beginning of the World from the Point of View of Quantum Theory, Letter to Nature, Nature 127, 706, 9 May 1931. [NASA ADS] [CrossRef] [Google Scholar]
  10. A. Linde, Gravitational waves and large field inflation, arXiv:1612.00020, and references therein. [Google Scholar]
  11. A. Linde, On inflation, cosmological constant, and SUSY breaking, arXiv:1608.00119, and references therein. [Google Scholar]
  12. See also A. Ijjas and P. Steinhardt, Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies, Class. Quantum Grav. 33 044001 (2016), arXiv: 1512.09010, and references therein. [CrossRef] [Google Scholar]
  13. L. Gonzalez-Mestres Pre-Big Bang, fundamental Physics and noncyclic cosmologies, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00035 (2014), and references therein. Preprint version at mp_arc 13-18. [Google Scholar]
  14. See, for instance, L. Gonzalez-Mestres, Big Bang, inflation, standard Physics… and the poten-tialities of new Physics and alternative cosmologies, talk given at the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 0212 (2016), and references therein. [Google Scholar]
  15. L. Gonzalez-Mestres, Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe, first-day lecture at this Conference. [Google Scholar]
  16. See, for instance, L. Smolin, Four principles for quantum gravity, arXiv:1610.01968, and references therein. [Google Scholar]
  17. See, for instance, F. Quevedo, Is String Phenomenology an Oxymoron?, arXiv:1612.01569, and references therein. [Google Scholar]
  18. See, for instance, J. Martin, The Observational Status of Cosmic Inflation after Planck, Lectures given at the II JPBCosmo school (Brazil), arXiv:1502.05733, and references therein. [Google Scholar]
  19. See, for instance, A. Mütter, M. Ratz and P. Vaudrevange, Grand Unification without Proton Decay, arXiv:1606.02303 [Google Scholar]
  20. See, for instance, H. Nilles and M. Winkler, 750 GeV Diphotons and Supersymmetric Grand Unification, J. High Energ. Phys. 1605 (2016), 182, arXiv:1604.03598 [CrossRef] [Google Scholar]
  21. See, for instance, A. Chamseddine, A. Connes and W. van Suijlekom, Grand Unification in the Spectral Pati-Salam Model, J. High Energ. Phys. 1511 (2015), 011, arXiv:1507.08161 [CrossRef] [Google Scholar]
  22. See, for instance, Y. BenTov and A. Zee, The Origin of Families and SO(18) Grand Unification, Phys. Rev. D 93, 065036 (2016), arXiv:1505.04312 [CrossRef] [Google Scholar]
  23. See, for instance, G. 't Hooft, The Evolution of Quantum Field Theory, From QED to Grand Unification, contribution to The Standard Theory up to the Higgs discovery - 60 years of CERN, arXiv:1503.05007 [Google Scholar]
  24. L. Gonzalez-Mestres, Spinorial Regge trajectories and Hagedorn-like temperatures, presented at ICNFP 2015, EPJ Web of Conferences 126, 05005 (2016). [Google Scholar]
  25. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, contribution the 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00062 (2014). See also the Post Scriptum to the preprint version, mp_arc 14-31. [Google Scholar]
  26. See, for instance, A. Padilla, Lectures on the Cosmological Constant Problem, arXiv: 1502.05296, and references therein. [Google Scholar]
  27. S. Weinberg, The Cosmological Constant Problems, Talk given at Dark Matter 2000, Marina del Rey, CA, February 2000, arXiv:astro-ph/0005265, and references therein. [Google Scholar]
  28. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum. [CrossRef] [Google Scholar]
  29. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Invisible Universe International Conference, Paris June 29 - July 3, 2009. The arXiv.org version arXiv:0912.0725 includes a relevant Post Scriptum. [Google Scholar]
  30. G. Klimchitskaya and V. Mostepanenko, Casimir and van der Waals forces: Advances and problems, Proceedings of Peter the Great St.Petersburg Polytechnic University, N1 (517), 41 (2015), arXiv:1605.1507.02393, and references therein. [CrossRef] [Google Scholar]
  31. H. Nikolic, Proof that Casimir force does not originate from vacuum energy, Phys. Lett. B 761, 197 (2016), arXiv:1605.04143, and references therein. [CrossRef] [Google Scholar]
  32. See also L. Gonzalez-Mestres, Tests and prospects of new physics at very high energy, contribution the 3rd International Conference on New Frontiers in Physics (ICNFP 2014), Kolymbari, Crete, Greece, 28 July - 6 August 2014, EPJ Web of Conferences 95, 05007 (2015), and references therein. [Google Scholar]
  33. See, for instance, B. Hensen et al., Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis, Scientific Reports 6, 30289 (2016), arXiv:1603.05705, and references therein. [CrossRef] [PubMed] [Google Scholar]
  34. S. Bogdanovic et al., Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks, arXiv:1612.02164, and references therein. [Google Scholar]
  35. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  36. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026 [Google Scholar]
  37. L. Gonzalez-Mestres, Can matter accelerate the expansion of the Universe? (I), mp_arc 16-33 [Google Scholar]
  38. L. Gonzalez-Mestres, Cosmological implications of a preonic vacuum (I), mp_arc 16-62, [Google Scholar]
  39. See, for instance, L. Gonzalez-Mestres, Spinorial space-time and the origin of Quantum Mechanics, contribution to the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 05006 (2016), and references therein. [Google Scholar]
  40. L. Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  41. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  42. L. Gonzalez-Mestres, BICEP2, Planck, spinorial space-time, pre-Big Bang, contribution the 3rd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 23 - 30, 2014, EPJ Web of Conferences 95, 03014 (2015),and references therein. [Google Scholar]
  43. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017 [Google Scholar]
  44. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv:astro-ph/9505117 [Google Scholar]
  45. See, for instance, L. Gonzalez-Mestres, Spinorial space-time and the origin of Quantum Mechanics, contribution to the 4th International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, 23-30 August 2015, EPJ Web of Conferences 126, 05006 (2016), and references therein. [Google Scholar]
  46. See, for instance, the Planck Collaboration, Planck 2015 results. XVI. Isotropy and statistics of the CMB, Astronomy & Astrophysics 594, A16 (2016), arXiv:1506.07135, and references therein [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  47. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00063 (2014), references therein and Post Scriptum to the preprint hal-00983005. [Google Scholar]
  48. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 1333, and references therein. [Google Scholar]
  49. See, for instance, M. Putten, A new estimator of the deceleration parameter from galaxy rotation curves, arXiv:1604.01099, and references therein. [Google Scholar]
  50. See, for instance, M. Putten, New estimates of the deceleration parameter in weak gravity, arXiv:1611.05692, and references therein. [Google Scholar]
  51. Planck Collaboration, ESA site, http://www.cosmos.esa.int/web/planck [Google Scholar]
  52. See, for instance, S. Heinemeyer, The 750 GeV diphoton excess and SUSY, Talk given at the "Conference on New Physics at the Large Hadron Collider", 29.02. - 04.03.2016, Nanyang University, Singapore, arXiv:1605.08324, and references therein. [Google Scholar]
  53. See, for instance, B. Lenzi, Search for a high mass diphoton resonance using the ATLAS detector, Proceedings for the 38th International Conference on High Energy Physics (Chicago), arXiv:1611.03308, and references therein. [Google Scholar]
  54. See, for instance, CMS Collaboration, Search for high-mass diphoton resonances in protonproton collisions at 13 TeV and combination with 8 TeV search arXiv:1609.02507, and references therein. [Google Scholar]
  55. See, for instance, the 1979 Nobel lecture by Abdus Salam, and references therein. [Google Scholar]
  56. L. Gonzalez-Mestres, Cosmological implications of a possible class of particles able to travel faster than light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48, 131 (1996), arXiv:astro-ph/9601090 [Google Scholar]
  57. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070, and references therein. [Google Scholar]
  58. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light (abridged version), arXiv:gr-qc/9508054 [Google Scholar]
  59. M. Gasperini and G. Veneziano, Pre-Big-Bang in String Cosmology, Astropart. Phys. 1, 317 (1993), arXiv:hep-th/9211021 [NASA ADS] [CrossRef] [Google Scholar]
  60. M. Gasperini and G. Veneziano, The Pre-Big Bang Scenario in String Cosmology, Phys. Rept. 373, 1 (2003), arXiv:hep-th/0207130 [CrossRef] [MathSciNet] [Google Scholar]
  61. H. Nielsen and P. Olesen, A parton view on dual amplitudes, Phys. Lett. B 32, 203 (1970). Preprint CERN TH. 1166 available on Research Gate. [CrossRef] [Google Scholar]
  62. P. Aurenche and L. Gonzalez-Mestres, Structure of the cylinder term in the topological expansion, Phys. Rev. D 18, 2995 (1978). [CrossRef] [Google Scholar]
  63. P. Aurenche and L. Gonzalez-Mestres, Glueball-Pomeron identity and the transverse structure of two-jet events, Z. Phys. C - Particles and Fields 2, 229 (1979). CERN preprint TH. 2643 available at the CERN Document Server. [CrossRef] [Google Scholar]
  64. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (I), mp_arc 14-16 [Google Scholar]
  65. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (II), mp_arc 14-60 [Google Scholar]
  66. See, for instance, The BICEP and Keck Array CMB Experiments, http://bicepkeck.org/ [Google Scholar]
  67. See, for instance, S. Simon et al., Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate, arXiv:1511.04760 [Google Scholar]
  68. B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015), arXiv:1508.05949 [CrossRef] [PubMed] [Google Scholar]
  69. Pan Jianwei, Quantum Science Satellite, Chinese Journal of Space Science 34, 547 (2014). [Google Scholar]
  70. Xinhua, August 16 (2016): China launches first-ever quantum communication satellite, http://news.xinhuanet.com/english/2016-08/16/c_135601010.htm [Google Scholar]
  71. E. Gibney, Chinese satellite is one giant step for the quantum internet, Nature 535, 478 (2016). [CrossRef] [PubMed] [Google Scholar]
  72. S. Hawking, The Beginning of Time, http://www.hawking.org.uk/the-beginning-of-time.html in Stephen Hawking Official Website. [Google Scholar]
  73. S. Hawking, A Brief History of Time, Bantam; 10th Anniversary edition (September 1, 1998). [Google Scholar]
  74. A. Borde and A. Vilenkin, Eternal inflation and the initial singularity, Phys. Rev. Lett. 72, 3305 (1994), arXiv:gr-qc/9312022 [CrossRef] [PubMed] [Google Scholar]
  75. A. Borde, Open and Closed Universes, Initial Singularities and Inflation, Phys.Rev. D 50, 3692 (1994), arXiv:gr-qc/9403049 [CrossRef] [MathSciNet] [Google Scholar]
  76. See, for instance, G. Bogdanoff, Fluctuations quantiques de la signature de la métrique à l'échelle de Planck, Thesis Université de Bourgogne (1999), https://tel.archives-ouvertes.fr/tel-00001502/, and references therein. [Google Scholar]
  77. See, for instance, I. Bogdanoff, Etat topologique de l'espace temps à l'échelle 0, Thesis Université de Bourgogne (2002), https://tel.archives-ouvertes.fr/tel-00001503/k, and references therein. [Google Scholar]
  78. S. Hawking, The Universe in a Nutshell, Bantam 2001. [Google Scholar]
  79. S. Hawking and L. Mlodinow, The Grand Design, Bantam reprint 2012. [Google Scholar]
  80. See, for instance, G. Santos, G. Gubitosi and G. Amelino-Camelia, On the initial singularity problem in rainbow cosmology, JCAP 08, 005 52015), arXiv:1502.02833, and references therein. [Google Scholar]
  81. J. Magueijo and L. Smolin, Gravity's Rainbow, Class. Quant. Grav. 21, 1725 (2004), arXiv:gr-qc/0305055 [CrossRef] [MathSciNet] [Google Scholar]
  82. L. Gonzalez-Mestres, Absence of Greisen-Zatsepin-Kuzmin Cutoff and Stability of Unstable Particles at Very High Energy, as a Consequence of Lorentz Symmetry Violation, Proceedings of the 25th International Cosmic Ray Conference, Potchefstroomse Universiteit 1997, Vol. 6, p. 113. arXiv:physics/9705031. [Google Scholar]
  83. L. Gonzalez-Mestres, Superluminal Particles and High-Energy Cosmic Rays, Proceedings of the 25th International Cosmic Ray Conference, Potchefstroomse Universiteit 1997, Vol. 6, p. 109. arXiv:physics/9705032. [Google Scholar]
  84. See, for instance, J. Donoghue, The Multiverse and Particle Physics, Annual Reviews of Nuclear and Particle Science, 66, 1 (2016), arXiv:1601.05136, and references therein. [CrossRef] [Google Scholar]
  85. Y. Aharonov, E. Cohen and T. Shushi, Is the Quilted Multiverse Consistent with a Thermodynamic Arrow of Time?, arXiv: 1608.08798, and references therein. [Google Scholar]
  86. See, for instance, A. Linde, A brief history of the multiverse, arXiv:1512.01203, and references therein. [Google Scholar]
  87. See also J. Horgan, Physicist Slams Cosmic Theory He Helped Conceive, Scientific American, Cross-Check blog, December 1, 2014. [Google Scholar]
  88. See, for instance, F. Albareti et al., Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample, Mon. Not. Roy. Astron. Soc. 452, 4153 (2015), arXiv:1501.00560 [NASA ADS] [CrossRef] [Google Scholar]
  89. L. Gonzalez-Mestres, The present status of Cosmology and new approaches to particles and Cosmos and Value of H, spinorial space-time and Universe's expansion, ICNFP 2016 Conference. [Google Scholar]
  90. See, for instance, Henri Poincaré Papers, http://henripoincarepapers.univ-lorraine.fr/ (Université de Lorraine). [Google Scholar]
  91. An example of an article by Henri Poincaré published in 1912 is Sur la théorie des quanta, Journal de physique théorique et appliqué 2, 5 (see [90]). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.