Open Access
Issue
EPJ Web of Conferences
Volume 167, 2018
Plasma Physics by Laser and Applications (PPLA 2017)
Article Number 02001
Number of page(s) 5
Section Laser Ion Acceleration
DOI https://doi.org/10.1051/epjconf/201816702001
Published online 09 January 2018
  1. Diado, H. et al. Review of laser-driven ion sources and their applications, Reports on Progress in Physics, 75,5, 2012
  2. Fiorini, F. et al. Characterization of laser-driven electron and photon beams using the Monte Carlo code FLUKA, Laser and Particle Beams, 32, 233-241, 2013 [CrossRef]
  3. Coury, M. et al. Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets. Appl. Phys. Lett. 100, 074105 (2012). [CrossRef]
  4. Brenner, C. et al. Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams 29, 345–351 (2011). [CrossRef]
  5. Brenner, C. M., McKenna, P. & Neely, D. Modelling the effect of laser focal spot size on sheath-accelerated protons in intense laser–foil interactions. Plasma Phys. Control. Fusion 56, 084003 (2014). [CrossRef]
  6. Bonnet, T. et al. Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instruments 84, 103510 (2013). [CrossRef]
  7. Hidding, B. et al. Novel method for characterizing relativistic electron beams in a harsh laser-plasma environment. Rev. Sci. Instruments 78 (2007). [CrossRef] [PubMed]
  8. Gray, R. J. et al. Surface transport of energetic electrons in intense picosecond laser-foil interactions. Appl. Phys. Lett. 99, 171502 (2011). [CrossRef]
  9. Rusby, D. R. et al. Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions. J. Plasma Phys. 81, 475810505 (2015). [CrossRef]
  10. Ge, X. L. et al. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets. Appl. Phys. Lett. 107, 091111 (2015). [CrossRef]
  11. Link, A., Freeman, R. R., Schumacher, D. W. & Van Woerkom, L. D. Effects of target charging and ion emission and the energy spectrum of emitted electrons. Phys. Plasmas 18 (2011). DOI 10.1063/1.3587123. [CrossRef]
  12. Beg, F. N. et al. A study of picosecond laser–solid interactions up to 1019 W/cm2. Phys. Plasmas 4, 447–457 (1997). [CrossRef]
  13. Haines, M. G., Wei, M. S., Beg, F. N. & Stephens, R. B. Hot-electron temperature and laser-light absorption in fast ignition.Phys. Rev. Lett. 102, 1–4 (2009). DOI 10.1103/PhysRevLett.102.045008. [CrossRef] [PubMed]
  14. Wilks, S. C. & Kruer, W. L. Absorption of Ultrashort, Ultra-Intense Laser Light by Solids and Overdense Plasmas. 33, 1954–1968 (1997).
  15. Arber, T. D. et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001 (2015). [NASA ADS] [CrossRef]
  16. McKenna, P. et al. Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 591–596 (2008). DOI 10.1109/PLASMA.2009.5227320. [CrossRef]
  17. Carroll, D., Quinn, M., Yuan, X. & McKenna, P. Effects of front surface plasma expansion on proton acceleration driven by the Vulcan Petawatt laser. clf.rl.ac.uk 19–22 (2008).
  18. Wagner, F. et al. Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification. Appl. Phys. B: Lasers Opt. 116, 429–435 (2014). [CrossRef]
  19. Wagner F., et al, Pre-plasma formation in experiments using petawatt lasers, Opt. Express 22, 29505-29514 (2014) [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.