Open Access
Issue |
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 10 | |
Section | Plenary Talks | |
DOI | https://doi.org/10.1051/epjconf/201816801004 | |
Published online | 09 January 2018 |
- B. P. Abbott, et al. (LIGO Scientific and Virgo Collaborations), Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016) [Google Scholar]
- B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116, 241103 (2016) [Google Scholar]
- B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2 Phys. Rev. Lett. 118, 221101 (2017) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- K. Kuroda, W.-T. Ni and W.-P. Pan, Gravitational waves: Classification, methods of detection, sensitivities, and sources, Int. J. Mod. Phys. D 24, 1530031 (2015); also in One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity, Chap. 10, ed. W.-T. Ni (World Scientific, Singapore, 2017) [CrossRef] [Google Scholar]
- W.-T. Ni, Gravitational wave, dark energy and inflation, Mod. Phys. Lett. A 25, 922 (2010); arXiv:1003.3899; Classification of Gravitational Waves, http://astrod.wikispaces.com/file/view/GW-classification.pdf [CrossRef] [Google Scholar]
- D. Blair, et al., Gravitational wave astronomy: the current status, Sci. China-Phys. Mech. Astron. 58, 120402 (2015) [CrossRef] [Google Scholar]
- S. Kuroyanagi, L.-W. Luo and W.-T. Ni, Gravitational wave sensitivities over all frequency bands, paper in preparation [Google Scholar]
- W.-T. Ni, Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar system, Class. Quantum Grav. 26, 075021 (2009) [CrossRef] [Google Scholar]
- M. Armano, H. Audley, G. Auger et al., Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results, Phys. Rev. Lett. 116, 231101 (2016) [NASA ADS] [CrossRef] [Google Scholar]
- A. Petiteau, M. Hewitson, G. Heinzel, E. Fitzsimons and H. Halloin, LISA noise budget, Tech. rep. LISA Consortium lISA-CST-TN-0001 (2016) [Google Scholar]
- P. Amaro-Seoane, H. Audley, S. Babak et al., Laser Interferometer Space Antenna, submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programme, arXiv:1702.00786 [astro-ph.IM] [Google Scholar]
- M. Tinto and S. V. Dhurandhar, Time-delay interferometry, Liv. Rev. Rel. 17, 6 (2014); and references therein [CrossRef] [Google Scholar]
- G. Wang and W.-T. Ni, Numerical simulation of time delay interferometry for new LISA, TAIJI and other LISA-like missions, arXiv:1707.09127 [astro-ph.IM] [Google Scholar]
- G. de Vine, B. Ware, K. McKenzie, R. E. Spero, W. M. Klipstein, and D. A. Shaddock, Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna, Phys. Rev. Lett. 104, 211103 (2010) [CrossRef] [PubMed] [Google Scholar]
- S. J. Mitryk, G. Mueller and J. Sanjuan, Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects, Phys. Rev. D 86, 122006 (2012) [CrossRef] [Google Scholar]
- A.-C. Liao, W.-T. Ni and J.-T. Shy, On the study of weak-light phase locking for laser astrodynamical missions (in Chinese) Publications of the Yunnan Observatory 3, 88-100 2002) [Google Scholar]
- A.-C. Liao, W.-T. Ni and J.-T. Shy, Pico-watt and femto-watt weak-light phase locking Int. J. Mod. Phys. D 11, 1075-1085 (2002) [CrossRef] [Google Scholar]
- G. J. Dick, M. D. Strekalov, K. Birnbaum et al., Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder, IPN Progress Report 42 1752008 (2008) [Google Scholar]
- O. Gerberding, B. Sheard, I. Bykov et al., Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments, Classical Quantum Gravity 30, 235029 (2013) [CrossRef] [Google Scholar]
- S. P. Francis, T. T.-Y. Lam, K. McKenzie et al., Weak-light phase tracking with a low cycle slip rate, Optics Letters 39, 5251-5154 (2014) [CrossRef] [PubMed] [Google Scholar]
- LISA Study Team, LISA (Laser Interferometer Space Antenna) A Cornerstone Mission for the Observation of Gravitational Waves, ESA System and Technology Study Report, ESA-SCI 11 (2000) [Google Scholar]
- W.-T. Ni, ASTROD and gravitational waves, pp. 117-129 in Gravitational Wave Detection, edited by K. Tsubono, M.-K. Fujimoto and K. Kuroda (Universal Academy Press, Tokyo, Japan, 1997) [Google Scholar]
- W.-T. Ni, ASTROD-GW: Overview and progress, Int. J. Mod. Phys. D 22, 1431004 (2013); and references therein [Google Scholar]
- W.-T. Ni, Gravitational Wave Detection in Space, Int. J. Mod. Phys. D 25, 1630001 (2016); also in One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity, Chap. 12, ed. W.-T. Ni and references therein (World Scientific, Singapore, (2017); [Google Scholar]
- A. Sesana, Prospects for multiband gravitational-wave astronomy after GW150914, Phys. Rev. Lett. 116, 231102 (2016) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- N. Cornish and T. Robson, Galactic binary science with the new LISA design, J. Phys.: Conf. Ser. 840, 012024 (2017) [CrossRef] [Google Scholar]
- J. Harms, B. J. J. Slagmolen, R. X. Adhikari et al, Low-frequency terrestrial gravitational-wave detectors, Phys. Rev. D 88, 122003 (2013) [Google Scholar]
- H. J. Paik, SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory), Plenary talk given in Joint Meeting of 13th International Conference on Gravitation, Astrophysics, and Cosmology and 15th Italian-Korean Symposium on Relativistic Astrophysics, Ewha Womans University, Seoul, Korea, July 3-7, 2017) [Google Scholar]
- H. J. Paik, C. E Griggs, M. Moody et al., Low-frequency terrestrial tensor gravitational-wave detector, Class. Quantum Grav. 33, 075003 (19pp) (2016) [CrossRef] [Google Scholar]
- J. Harms and H. J. Paik, Newtonian-noise cancellation in full-tensor gravitational-wave detectors, Phys. Rev. D 92, 022001 (2015) [CrossRef] [Google Scholar]
- W.-T. Ni, G. Wang and A.-M. Wu, Astrodynamical Middle-frequency Interferometric GW Observatory AMIGO: mission concept and orbit design, paper in preparation [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.