Open Access
Issue
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
Article Number 01004
Number of page(s) 10
Section Plenary Talks
DOI https://doi.org/10.1051/epjconf/201816801004
Published online 09 January 2018
  1. B. P. Abbott, et al. (LIGO Scientific and Virgo Collaborations), Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016) [NASA ADS] [CrossRef] [PubMed]
  2. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116, 241103 (2016) [NASA ADS] [CrossRef] [PubMed]
  3. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2 Phys. Rev. Lett. 118, 221101 (2017) [CrossRef] [PubMed]
  4. K. Kuroda, W.-T. Ni and W.-P. Pan, Gravitational waves: Classification, methods of detection, sensitivities, and sources, Int. J. Mod. Phys. D 24, 1530031 (2015); also in One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity, Chap. 10, ed. W.-T. Ni (World Scientific, Singapore, 2017) [CrossRef]
  5. W.-T. Ni, Gravitational wave, dark energy and inflation, Mod. Phys. Lett. A 25, 922 (2010); arXiv:1003.3899; Classification of Gravitational Waves, http://astrod.wikispaces.com/file/view/GW-classification.pdf [CrossRef]
  6. D. Blair, et al., Gravitational wave astronomy: the current status, Sci. China-Phys. Mech. Astron. 58, 120402 (2015) [CrossRef]
  7. S. Kuroyanagi, L.-W. Luo and W.-T. Ni, Gravitational wave sensitivities over all frequency bands, paper in preparation
  8. W.-T. Ni, Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar system, Class. Quantum Grav. 26, 075021 (2009) [CrossRef]
  9. M. Armano, H. Audley, G. Auger et al., Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results, Phys. Rev. Lett. 116, 231101 (2016) [CrossRef] [PubMed]
  10. A. Petiteau, M. Hewitson, G. Heinzel, E. Fitzsimons and H. Halloin, LISA noise budget, Tech. rep. LISA Consortium lISA-CST-TN-0001 (2016)
  11. P. Amaro-Seoane, H. Audley, S. Babak et al., Laser Interferometer Space Antenna, submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programme, arXiv:1702.00786 [astro-ph.IM]
  12. M. Tinto and S. V. Dhurandhar, Time-delay interferometry, Liv. Rev. Rel. 17, 6 (2014); and references therein [CrossRef]
  13. G. Wang and W.-T. Ni, Numerical simulation of time delay interferometry for new LISA, TAIJI and other LISA-like missions, arXiv:1707.09127 [astro-ph.IM]
  14. G. de Vine, B. Ware, K. McKenzie, R. E. Spero, W. M. Klipstein, and D. A. Shaddock, Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna, Phys. Rev. Lett. 104, 211103 (2010) [CrossRef] [PubMed]
  15. S. J. Mitryk, G. Mueller and J. Sanjuan, Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects, Phys. Rev. D 86, 122006 (2012) [CrossRef]
  16. A.-C. Liao, W.-T. Ni and J.-T. Shy, On the study of weak-light phase locking for laser astrodynamical missions (in Chinese) Publications of the Yunnan Observatory 3, 88-100 2002)
  17. A.-C. Liao, W.-T. Ni and J.-T. Shy, Pico-watt and femto-watt weak-light phase locking Int. J. Mod. Phys. D 11, 1075-1085 (2002) [CrossRef]
  18. G. J. Dick, M. D. Strekalov, K. Birnbaum et al., Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder, IPN Progress Report 42 1752008 (2008)
  19. O. Gerberding, B. Sheard, I. Bykov et al., Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments, Classical Quantum Gravity 30, 235029 (2013) [CrossRef]
  20. S. P. Francis, T. T.-Y. Lam, K. McKenzie et al., Weak-light phase tracking with a low cycle slip rate, Optics Letters 39, 5251-5154 (2014) [CrossRef] [PubMed]
  21. LISA Study Team, LISA (Laser Interferometer Space Antenna) A Cornerstone Mission for the Observation of Gravitational Waves, ESA System and Technology Study Report, ESA-SCI 11 (2000)
  22. W.-T. Ni, ASTROD and gravitational waves, pp. 117-129 in Gravitational Wave Detection, edited by K. Tsubono, M.-K. Fujimoto and K. Kuroda (Universal Academy Press, Tokyo, Japan, 1997)
  23. W.-T. Ni, ASTROD-GW: Overview and progress, Int. J. Mod. Phys. D 22, 1431004 (2013); and references therein
  24. W.-T. Ni, Gravitational Wave Detection in Space, Int. J. Mod. Phys. D 25, 1630001 (2016); also in One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity, Chap. 12, ed. W.-T. Ni and references therein (World Scientific, Singapore, (2017);
  25. A. Sesana, Prospects for multiband gravitational-wave astronomy after GW150914, Phys. Rev. Lett. 116, 231102 (2016) [NASA ADS] [CrossRef] [PubMed]
  26. N. Cornish and T. Robson, Galactic binary science with the new LISA design, J. Phys.: Conf. Ser. 840, 012024 (2017) [CrossRef]
  27. J. Harms, B. J. J. Slagmolen, R. X. Adhikari et al, Low-frequency terrestrial gravitational-wave detectors, Phys. Rev. D 88, 122003 (2013)
  28. H. J. Paik, SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory), Plenary talk given in Joint Meeting of 13th International Conference on Gravitation, Astrophysics, and Cosmology and 15th Italian-Korean Symposium on Relativistic Astrophysics, Ewha Womans University, Seoul, Korea, July 3-7, 2017)
  29. H. J. Paik, C. E Griggs, M. Moody et al., Low-frequency terrestrial tensor gravitational-wave detector, Class. Quantum Grav. 33, 075003 (19pp) (2016) [CrossRef]
  30. J. Harms and H. J. Paik, Newtonian-noise cancellation in full-tensor gravitational-wave detectors, Phys. Rev. D 92, 022001 (2015) [CrossRef]
  31. W.-T. Ni, G. Wang and A.-M. Wu, Astrodynamical Middle-frequency Interferometric GW Observatory AMIGO: mission concept and orbit design, paper in preparation

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.