Open Access
Issue
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
Article Number 01010
Number of page(s) 8
Section Plenary Talks
DOI https://doi.org/10.1051/epjconf/201816801010
Published online 09 January 2018
  1. T. H. Buscher, “A Symmetry of the String Background Field Equations,” Phys. Lett. B 194 (1987) 59. [CrossRef] [MathSciNet] [Google Scholar]
  2. T. H. Buscher, “Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models,” Phys. Lett. B 201 (1988) 466. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. J. Duff, “Duality Rotations in String Theory,” Nucl. Phys. B 335 (1990) 610. [CrossRef] [Google Scholar]
  4. A. A. Tseytlin, “Duality Symmetric Formulation of String World Sheet Dynamics,” Phys. Lett. B 242 (1990) 163. [Google Scholar]
  5. A. A. Tseytlin, “Duality symmetric closed string theory and interacting chiral scalars,” Nucl. Phys. B 350 (1991) 395. [CrossRef] [Google Scholar]
  6. C. M. Hull, “A Geometry for non-geometric string backgrounds,” JHEP 0510 (2005) 065. [CrossRef] [Google Scholar]
  7. C. M. Hull, “Global aspects of T-duality, gauged sigma models and T-folds,” JHEP 0710 (2007) 057. [CrossRef] [Google Scholar]
  8. C. M. Hull, “Doubled Geometry and T-Folds,” JHEP 0707 (2007) 080 [hep-th/0605149]. [CrossRef] [Google Scholar]
  9. W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47 (1993) 5453 [hep-th/9302036]. [CrossRef] [Google Scholar]
  10. W. Siegel, “Superspace duality in low-energy superstrings,” Phys. Rev. D 48 (1993) 2826 [hep-th/9305073]. [CrossRef] [Google Scholar]
  11. C. Hull and B. Zwiebach, “Double Field Theory,” JHEP 0909 (2009) 099 [arXiv:0904.4664 [hep-th]]. [CrossRef] [Google Scholar]
  12. C. Hull and B. Zwiebach, “The Gauge algebra of double field theory and Courant brackets,” JHEP 0909 (2009) 090 [arXiv:0908.1792 [hep-th]]. [CrossRef] [Google Scholar]
  13. O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of double field theory,” JHEP 1008 (2010) 008 [arXiv:1006.4823 [hep-th]]. [CrossRef] [Google Scholar]
  14. G. Aldazabal, D. Marques and C. Nunez, “Double Field Theory: A Pedagogical Review,” Class. Quant. Grav. 30 (2013) 163001 doi:10.1088/0264-9381/30/16/163001 [arXiv:1305.1907 [hep-th]]. [CrossRef] [Google Scholar]
  15. D. S. Berman and D. C. Thompson, “Duality Symmetric String and M-Theory,” Phys. Rept. 566 (2014) 1 doi:10.1016/j.physrep.2014.11.007 [arXiv:1306.2643 [hep-th]]. [CrossRef] [Google Scholar]
  16. O. Hohm, D. Lüst and B. Zwiebach, “The Spacetime of Double Field Theory: Review, Remarks, and Outlook,” Fortsch. Phys. 61 (2013) 926 doi:10.1002/prop.201300024 [arXiv:1309.2977]. [CrossRef] [Google Scholar]
  17. J. H. Park, “Comments on double field theory and diffeomorphisms,” JHEP 1306 (2013) 098 [arXiv:1304.5946 [hep-th]]. [CrossRef] [Google Scholar]
  18. K. Lee and J. H. Park, “Covariant action for a string in doubled-yet-gauged spacetime,” Nucl. Phys. B 880 (2014) 134 [arXiv:1307.8377 [hep-th]]. [CrossRef] [Google Scholar]
  19. S. M. Ko, C. Melby-Thompson, R. Meyer and J. H. Park, “Dynamics of Perturbations in Double Field Theory & Non-Relativistic String Theory,” JHEP 1512 (2015) 144 [arXiv:1508.01121 [hep-th]]. [Google Scholar]
  20. J. H. Park, “Green-Schwarz superstring on doubled-yet-gauged spacetime,” JHEP 1611 (2016) 005 [arXiv:1609.04265 [hep-th]]. [CrossRef] [Google Scholar]
  21. K. Morand and J. H. Park, “Classification of non-Riemannian doubled-yet-gauged spacetime,” arXiv:1707.03713 [hep-th]. [Google Scholar]
  22. I. Jeon, K. Lee and J. H. Park, ”Stringy differential geometry, beyond Riemann,” Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294 [hep-th]]. [CrossRef] [Google Scholar]
  23. J. H. Park, S. J. Rey, W. Rim and Y. Sakatani, “O(D, D) covariant Noether currents and global charges in double field theory,” JHEP 1511 (2015) 131 [arXiv:1507.07545 [hep-th]]. [CrossRef] [Google Scholar]
  24. M. J. Duff, “Hidden String Symmetries?,” Phys. Lett. B 173 (1986) 289. [CrossRef] [Google Scholar]
  25. I. Jeon, K. Lee, J. H. Park and Y. Suh, “Stringy Unification of Type IIA and IIB Supergravities under N = 2D = 10 Supersymmetric Double Field Theory,” Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078 [hep-th]]. [CrossRef] [Google Scholar]
  26. I. Jeon, K. Lee and J. H. Park, “Incorporation of fermions into double field theory,” JHEP 1111 (2011) 025 [arXiv:1109.2035 [hep-th]]. [CrossRef] [Google Scholar]
  27. K. S. Choi and J. H. Park, “Standard Model as a Double Field Theory,” Phys. Rev. Lett. 115 (2015) no.17, 171603 [arXiv:1506.05277 [hep-th]]. [CrossRef] [PubMed] [Google Scholar]
  28. O. Hohm and B. Zwiebach, “On the Riemann Tensor in Double Field Theory,” JHEP 1205 (2012) 126. [CrossRef] [Google Scholar]
  29. T. D. Lee and C. N. Yang, “Conservation of Heavy Particles and Generalized Gauge Transformations,” Phys. Rev. 98 (1955) 1501. [CrossRef] [Google Scholar]
  30. S. M. Ko, J. H. Park and M. Suh, “The rotation curve of a point particle in stringy gravity,” arXiv:1606.09307 [hep-th]. To appear in JCAP. [Google Scholar]
  31. C. P. Burgess, R. C. Myers and F. Quevedo, “On spherically symmetric string solutions in four-dimensions,” Nucl. Phys. B 442 (1995) 75 [hep-th/9410142]. [CrossRef] [Google Scholar]
  32. M. Milgrom, “A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Astrophys. J. 270 (1983) 365. [CrossRef] [Google Scholar]
  33. J. H. Park, “Green-Schwarz superstring and Stringy Gravity in doubled-yet-gauged spacetime,” talk at Banff International Research Station, http://www.birs.ca/events/2017/5-day-workshops/ 17w5018/videos/watch/201701231429-Park.html. [Google Scholar]
  34. C. D. A. Blair, “Particle actions and brane tensions from double and exceptional geometry,” arXiv:1707.07572 [hep-th]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.