Open Access
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
Article Number 07001
Number of page(s) 4
Section Gravity in String Theory
Published online 09 January 2018
  1. J. W. Chen, S. Sun and Y. L. Zhang, “Holographic Bell Inequality,” arXiv:1612.09513 [hep-th]. [Google Scholar]
  2. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195 (1964). [Google Scholar]
  3. A. Einstein, B. Podolsky and N. Rosen, “Can quantum mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777 (1935). [CrossRef] [Google Scholar]
  4. J. F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969). [CrossRef] [Google Scholar]
  5. B. S. Cirelson, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. 4, 93 (1980). [CrossRef] [MathSciNet] [Google Scholar]
  6. J. B. Hartle, “Space-time quantum mechanics and the quantum mechanics of space-time,” gr-qc/9304006. [Google Scholar]
  7. J. Maldacena, “A model with cosmological Bell inequalities,” Fortsch. Phys. 64, 10 (2016) [arXiv:1508.01082 [hep-th]]. [CrossRef] [Google Scholar]
  8. S. Choudhury, S. Panda and R. Singh, “Bell violation in the Sky,” Eur. Phys. J. C 77, no. 2, 60 (2017) [arXiv:1607.00237 [hep-th]]. [CrossRef] [EDP Sciences] [Google Scholar]
  9. J. W. Chen, S. H. Dai, D. Maity, S. Sun and Y. L. Zhang, “Towards Searching for Entangled Photons in the CMB Sky,” arXiv:1701.03437 [quant-ph]. [Google Scholar]
  10. J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys. 61, 781 (2013) [arXiv:1306.0533 [hep-th]]. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Susskind, “Copenhagen vs Everett, Teleportation, and ER=EPR,” Fortsch. Phys. 64, no. 6-7, 551 (2016) [arXiv:1604.02589 [hep-th]]. [CrossRef] [Google Scholar]
  12. A. Einstein and N. Rosen, “The Particle Problem in the General Theory of Relativity,” Phys. Rev. 48, 73 (1935). [CrossRef] [Google Scholar]
  13. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes: Complementarity or Firewalls?,” JHEP 1302, 062 (2013) [arXiv:1207.3123 [hep-th]]. [CrossRef] [Google Scholar]
  14. K. Jensen and A. Karch, “Holographic Dual of an Einstein-Podolsky-Rosen Pair has a Wormhole,” Phys. Rev. Lett. 111, no. 21, 211602 (2013) [arXiv:1307.1132 [hep-th]]. [CrossRef] [PubMed] [Google Scholar]
  15. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” [Adv. Theor. Math. Phys. 2, 231 (1998)] [hep-th/9711200]. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. W. Xiao, “On the exact solution of the accelerating string in AdS(5) space,” Phys. Lett. B 665, 173 (2008) [arXiv:0804.1343 [hep-th]]. [CrossRef] [Google Scholar]
  17. J. Sonner, “Holographic Schwinger Effect and the Geometry of Entanglement,” Phys. Rev. Lett. 111, no. 21, 211603 (2013) [[arXiv:1307.6850 [hep-th]]. [CrossRef] [PubMed] [Google Scholar]
  18. K. Jensen, A. Karch and B. Robinson, “Holographic dual of a Hawking pair has a wormhole,” Phys. Rev. D 90, no. 6, 064019 (2014) [arXiv:1405.2065 [hepth]]. [CrossRef] [Google Scholar]
  19. K. Jensen and J. Sonner, “Wormholes and entanglement in holography,” Int. J. Mod. Phys. D 23, no. 12, 1442003 (2014) [arXiv:1405.4817 [hep-th]]. [CrossRef] [Google Scholar]
  20. M. Chernicoff, A. Güijosa and J. F. Pedraza, “Holographic EPR Pairs, Wormholes and Radiation,” JHEP 1310, 211 (2013) [arXiv:1308.3695 [hep-th]]. [CrossRef] [Google Scholar]
  21. A. Karch and S. Sun, “Matrix Flavor Brane and Dual Wilson Line,” Phys. Rev. D 89, no. 6, 066008 (2014) [arXiv:1312.2694 [hep-th]]. [CrossRef] [Google Scholar]
  22. T. Hirayama, P. W. Kao, S. Kawamoto and F. L. Lin, “Unruh effect and Holography,” Nucl. Phys. B 844, 1 (2011) [arXiv:1001.1289 [hep-th]]. [CrossRef] [Google Scholar]
  23. E. Caceres, M. Chernicoff, A. Guijosa and J. F. Pedraza, “Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories,” JHEP 1006, 078 (2010) [arXiv:1003.5332 [hep-th]]. [CrossRef] [Google Scholar]
  24. C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, “Energy loss of a heavy quark moving through N=4 supersymmetric Yang-Mills plasma,” JHEP 0607, 013 (2006) [hep-th/0605158]. [CrossRef] [Google Scholar]
  25. M. Chernicoff and A. Guijosa, “Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories,” JHEP 0806, 005 (2008) [arXiv:0803.3070 [hep-th]]. [CrossRef] [Google Scholar]
  26. P. M. Chesler, K. Jensen and A. Karch, “Jets in strongly-coupled N = 4 super Yang-Mills theory,” Phys. Rev. D 79, 025021 (2009) [arXiv:0804.3110 [hepth]]. [CrossRef] [Google Scholar]
  27. D. T. Son and A. O. Starinets, “Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002). [arXiv:hep-th/0205051]. [CrossRef] [Google Scholar]
  28. C. P. Herzog and D. T. Son, “Schwinger-Keldysh propagators from AdS/CFT correspondence,” JHEP 0303, 046 (2003). [arXiv:hep-th/0212072]. [CrossRef] [Google Scholar]
  29. D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum Field Theory,” Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [arXiv:0704.0240 [hep-th]]. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001]. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, “EPR Pairs, Local Projections and Quantum Teleportation in Holography,” JHEP 1608, 077 (2016) [arXiv:1604.01772 [hep-th]]. [CrossRef] [Google Scholar]
  32. F. Dominguez, C. Marquet, A. H. Mueller, B. Wu and B. W. Xiao, Nucl. Phys. A 811, 197 (2008) [arXiv:0803.3234 [nucl-th]]. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.