Open Access
Issue
EPJ Web Conf.
Volume 173, 2018
Mathematical Modeling and Computational Physics 2017 (MMCP 2017)
Article Number 01009
Number of page(s) 8
Section Plenary and Invited Lectures
DOI https://doi.org/10.1051/epjconf/201817301009
Published online 14 February 2018
  1. I. Kisel, V. Neskoromnyi, and G. Ososkov, Phys. Part. Nucl. 24, 6, 657–676 (1993) [Google Scholar]
  2. G.E. Hinton and R. Salakhutdinov, Science 313, 504–507 (2006) [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. Y. Bengio, Learning Deep Architectures for AI (Now Publishers Inc, 2009) p. 144 [Google Scholar]
  4. P. Lennie, Current biology 13, (6), 493–497 (2003) [CrossRef] [Google Scholar]
  5. Y. LeCun, L. Bottou, G. Orr, and K.-R. Müller, in Neural Networks: Tricks of the Trade, 9–50 (1998) [CrossRef] [Google Scholar]
  6. M. Carreira-Perpinan, Aistats 10, 33–40 (2005) [Google Scholar]
  7. Web CNN description facility, http://cs231n.github.io/convolutional-networks [Google Scholar]
  8. M. Kramer, AIChE Journal 37, 2, 161–310 (1991) [CrossRef] [Google Scholar]
  9. J. Schmidhuber, Neural Networks 61, 85–117 (2015) [CrossRef] [PubMed] [Google Scholar]
  10. MNIST, https://www.nist.gov/sites/default/files/documents/srd/nistsd19.pdf [Google Scholar]
  11. A. Phillips, H. Moon, P. Rauss, and S. Rizvi, IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 10 (2000) [CrossRef] [Google Scholar]
  12. B. Xu, N. Wang, T. Chen, and M. Li, https://arxiv.org/abs/1505.00853 [Google Scholar]
  13. D. Kingma and J.L. Ba, Adam, https://arxiv.org/abs/1412.6980 [Google Scholar]
  14. X. Glorot and Y. Bengio, Aistats 9, 249–256 (2010) [Google Scholar]
  15. M. Stone, Journal of the royal statistical society. Series B (Methodological), 111–147 (1974) [Google Scholar]
  16. A. Ruanet, A. Kudriavtsev, and S. Dadashev, Russian Journal of Genetics 37, 10, 1207–1209 (2001) [CrossRef] [Google Scholar]
  17. G.A. Ososkov and D.A. Baranov, Bulletin of PFUR Series Mathematics. Information Sciences. Physics. 3, 142–148 (2010) [Google Scholar]
  18. Web-portal of HybriLIT JINR computation facility, http://hybrilit.jinr.ru [Google Scholar]
  19. Speed up training with GPU-accelerated TensorFlow, http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-benchmarks.html [Google Scholar]
  20. Keras Python Deep Learning library, https://keras.io/getting-started/sequential-model-guide/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.