Open Access
EPJ Web Conf.
Volume 175, 2018
35th International Symposium on Lattice Field Theory (Lattice 2017)
Article Number 07019
Number of page(s) 8
Section 7 Nonzero Temperature and Density
Published online 26 March 2018
  1. G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393. [CrossRef] [Google Scholar]
  2. J. R. Klauder, Coherent state Langevin equations for canonical quantum systems with applications to the quantized Hall effect, Phys. Rev. A 29 (1984) 2036. [CrossRef] [Google Scholar]
  3. K. Nagata, J. Nishimura and S. Shimasaki, Argument for justification of the complex Langevin method and the condition for correct convergence, Phys. Rev. D 94, no. 11, 114515 (2016) [arXiv:1606.07627 [hep-lat]]. [CrossRef] [Google Scholar]
  4. G. Aarts, E. Seiler and I. O. Stamatescu, The Complex Langevin method: When can it be trusted?, Phys. Rev. D 81, 054508 (2010) [arXiv:0912.3360 [hep-lat]]. [CrossRef] [Google Scholar]
  5. J. Nishimura and S. Shimasaki, New insights into the problem with a singular drift term in the complex Langevin method, Phys. Rev. D 92 (2015) no.1, 011501 [arXiv:1504.08359 [hep-lat]]. [CrossRef] [Google Scholar]
  6. E. Seiler, D. Sexty and I. O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723, 213 (2013) [arXiv:1211.3709 [hep-lat]]. [CrossRef] [Google Scholar]
  7. G. Aarts, E. Seiler, D. Sexty and I. O. Stamatescu, Simulating QCD at nonzero baryon density to all orders in the hopping parameter expansion, Phys. Rev. D 90 (2014) no. 11, 114505 [arXiv:148.377 [hep-lat]]. [CrossRef] [Google Scholar]
  8. D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, Phys. Lett. B 729 (2014) 108 [arXiv:137.7748 [hep-lat]]. [NASA ADS] [CrossRef] [Google Scholar]
  9. Y. Ito and J. Nishimura, The complex Langevin analysis of spontaneous symmetry breaking in-ducedby complexfermion determinant, JHEP 1612, 009 (2016) [arXiv:1609.04501 [hep-lat]]. [CrossRef] [Google Scholar]
  10. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115]. [CrossRef] [Google Scholar]
  11. J. Nishimura, Exactly solvable matrix models for the dynamical generation of space-time in superstring theory, Phys. Rev. D 65 (2002) 105012 [hep-th/0108070]. [CrossRef] [Google Scholar]
  12. J. Nishimura, T. Okubo and F. Sugino, Gaussian expansion analysis of a matrix model with the spontaneous breakdown of rotational symmetry, Prog. Theor. Phys. 114 (2005) 487 [hep-th/0412194]. [CrossRef] [Google Scholar]
  13. K. N. Anagnostopoulos, T. Azuma and J. Nishimura, A practical solution to the sign problem in a matrix model for dynamical compactification, JHEP 1110 (2011) 126 [arXiv:1108.1534 [hep-lat]]. [CrossRef] [Google Scholar]
  14. J. Nishimura, T. Okubo and F. Sugino, Systematic study of the SO(10) symmetry breaking vacua in the matrix model for type IIB superstrings, JHEP 1110, 135 (2011) [arXiv:1108.1293 [hep-th]]. [CrossRef] [Google Scholar]
  15. K. Nagata, J. Nishimura and S. Shimasaki, Complex Langevin simulation of QCD at finite density and low temperature using the deformation technique, in Proceedings, 35th International Symposium on Lattice Field Theory (Lattice2017): Granada, Spain, to appear in EPJ Web Conf.. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.