Open Access
Issue |
EPJ Web Conf.
Volume 175, 2018
35th International Symposium on Lattice Field Theory (Lattice 2017)
|
|
---|---|---|
Article Number | 11025 | |
Number of page(s) | 8 | |
Section | 11 Theoretical Developments | |
DOI | https://doi.org/10.1051/epjconf/201817511025 | |
Published online | 26 March 2018 |
- Andrew Ng, Machine Learning, Stanford course available from Coursera [Google Scholar]
- See Yann Lecun website, http://yann.lecun.com/exdb/mnist/ [Google Scholar]
- F. Rosenblatt, The perceptron, Psychological Review, Vol. 65, No. 6 (1958) [Google Scholar]
- N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 87, 160601 (2001) [CrossRef] [PubMed] [Google Scholar]
- Y. Meurice, Phys. Rev. B 87, 064422 (2013), 1211.3675 [CrossRef] [Google Scholar]
- E. Efrati, Z. Wang, A. Kolan, L.P. Kadanoff, Rev. Mod. Phys. 86, 647 (2014) [CrossRef] [Google Scholar]
- Y. Liu, Y. Meurice, M.P. Qin, J. Unmuth-Yockey, T. Xiang, Z.Y. Xie, J.F. Yu, H. Zou, Phys. Rev. D88, 056005 (2013), 1307.6543 [Google Scholar]
- S. Foreman, J. Giedt, Y. Meurice, and J. Unmuth-Yockey, Machine learning inspired analysis of the Ising model transition, preprint in progress [Google Scholar]
- P. Mehta, D.J. Schwab, ArXiv e-prints (2014), 1410.3831 [Google Scholar]
- D.J. Schwab, P. Mehta, ArXiv e-prints (2016), 1609.03541 [Google Scholar]
- H.W. Lin, M. Tegmark, ArXiv e-prints (2016), 1608.08225 [Google Scholar]
- Dan Cireşan, Ueli Meier, Juergen Schmidhuber, ArXiv e-prints (2012), 1202.2745 [Google Scholar]
- Carrasquilla, J., Melko, R. G., Machine learning phases of matter. Nat. Phys. http://dx.doi.org/10.1038/nphys4035 (2017) [Google Scholar]
- Akinori Tanaka and Akio Tomiya, J. Phys. Soc. of Japan 86 063001 (2017), 1609.09087 [CrossRef] [Google Scholar]
- M. Luscher, Stochastic locality and master-field simulations of very large lattices, in Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, to appear in EPJWeb Conf., 1707.09758, http://inspirehep.net/record/1613675/files/arXiv:1707.09758.pdf [Google Scholar]
- Li Huang and Lei Wang, Phys. Rev. B 95, 035105 (2017), 1610.02746 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.