Open Access
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
Article Number 01027
Number of page(s) 4
Section Recent advances in lidar technology
Published online 13 April 2018
  1. Vogelmann, H., Sussmann, R., Trickl, T., and Reichert, A. Spatiotemporal variability of water vapor investigated using lidar and ftir vertical soundings above the zugspitze. Atmos. Chem. Phys., 15:3135– 3148,2015. [CrossRef] [Google Scholar]
  2. Trickl, T., Vogelmann, H., Fix, A., Schäfler, A., Wirth, M., Calpini, B., Levrat, G., Romanens, G., Apituley, A., Wilson, K. M., Begbie, R., Reichardt, J., Vomel, H., and Sprenger, M. How stratospheric are deep stratospheric intrusions? LUAMI 2008. Atmospheric Chemistry and Physics, 16(14):8791–8815, 2016. [CrossRef] [Google Scholar]
  3. Vogelmann, H. and Trickl, T. Wide Range Sounding of Free Tropospheric Water Vapor with a Differential Absorption Lidar (DIAL) at a High Altitude Station. Appl. Opt., 47(12):2116–2132, 2008. [CrossRef] [PubMed] [Google Scholar]
  4. Vogelmann, H., Sussmann, R., Trickl, T., and Borsdorff, T. Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL) and the solar FTIR system on Mt. Zugspitze. Atmos. Meas. Tech., 4(5):835–841, 2011. [CrossRef] [Google Scholar]
  5. Moore, A. S., Brown, K. E., Hall, W. M., Barnes, J. C., Edwards, W. C., Petway, L. B., Little, A. D., Luck, W. S., Jones, I. W., Antill, C. W., Browell, E. V., and Ismail, S. Development of the lidar atmospheric sensing experiment (lase) – an advanced airborne dial instrument. In A. Ansmann, R. Neu-ber, P. R. and Wandinger, U., editors, Advances in Atmospheric Remote Sensing with Lidar, pages 281–288. Springer-Verlag, 1996. Selected Papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22-26 July 1996. [Google Scholar]
  6. Browell, E. V., Ismail, S., and Grant, W. B. Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B, B 67:399–410, 1998. [CrossRef] [Google Scholar]
  7. Nagasawa, C., Nagai, T., Abo, M., Shibata, Y., and Uchino, O. Developement of airborne dial for water vapor measurement. In Singh, U. N., Itabe, T., and Sugimoto, N., editors, Lidar Remote Sensing for Industry and Environment Monitoring – Proceedings of SPIE - The International Society for Optical Engineering, volume 4153, pages 599–606. 2001. [CrossRef] [Google Scholar]
  8. Ertel, K., Linne, H., and Bosenberg, J. Injection-seeded pulsed ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation. Appl. Opt., 44:5120–5126, August 2005. [CrossRef] [PubMed] [Google Scholar]
  9. Wulfmeyer, V. Ground-based differential absorption lidar for water-vapor temperatur-profiling: development and specifications of a high-performance laser transmitter. Appl. Opt., 37(18):3804–3824, 1998. [CrossRef] [PubMed] [Google Scholar]
  10. Bosenberg, J. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. Appl. Opt., 37(18):3845–3860, 1998. [CrossRef] [PubMed] [Google Scholar]
  11. Kung, A. H. Regenerative amplification of a single-frequency optical parametric oscillator. Opt. Lett., 18(23):2017 – 2019, April 1993. [CrossRef] [PubMed] [Google Scholar]
  12. Bosenberg, W. R. and Guyer, D. R. Broadly tunable, single-frequency optical parametric freqency-conversion system. J. Opt. Soc. Am. B, 10(9):1716–1722, 1993. [CrossRef] [Google Scholar]
  13. Bethune, D. S. Dye cell design for high-power low-divergence excimer-pumped dye lasers. Appl. Opt., 20:1897–1899, June 1981. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.