Open Access
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
Article Number 02002
Number of page(s) 4
Section Spaceborne-Airborne lidar missions
Published online 13 April 2018
  1. Wulfmeyer, V., R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, Rev. Geophys. 53, 819–895. [CrossRef] [Google Scholar]
  2. Behrendt, A., Nakamura, T., Onishi, M., Baumgart, R., and Tsuda, T., 2002: Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient, Appl. Opt. 41, 7657–7666. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  3. Behrendt, A.,V. Wulfmeyer, E. Hammann, S.K. Muppa, and S. Pal., 2015: Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar, Atmos. Chem. Phys. 15, 5485-5500. [CrossRef] [Google Scholar]
  4. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz., 2004: Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett. 31, L01106, ISSN: 0094-8276. [CrossRef] [Google Scholar]
  5. Di Girolamo, P., A. Behrendt, and V.Wulfmeyer, 2006: Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption Lidar: performance simulations, Appl. Opt. 45, 2474-2494. [CrossRef] [PubMed] [Google Scholar]
  6. Di Girolamo, P., D. Summa, R. Ferretti, 2009: Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event, J. Atmos. Ocean. Tech. 26, 1742-1762. [CrossRef] [Google Scholar]
  7. Radlach, M., A. Behrendt, and V. Wulfmeyer, 2008: Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields. Atmos. Chem. Phys. 8, 159–169. [CrossRef] [Google Scholar]
  8. Hammann, E., A. Behrendt, F. Le Mounier, and V. Wulfmeyer, 2015: Temperature profiling of the atmospheric boundary layer with rotational raman lidar during the HD(CP)2 observational prototype experiment, Atmos. Chem. Phys. 15, 2867-2881. [CrossRef] [Google Scholar]
  9. Whiteman, D. N., R. Kurt, R. Scott, 2010: Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar, J. Atmos. Ocean. Technol. 27(11), 1781–1801. [CrossRef] [Google Scholar]
  10. Wulfmeyer, V., H. Bauer, P. Di Girolamo, C. Serio, 2005: Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar. Remote Sens. Environ. 95, 211-230. [CrossRef] [Google Scholar]
  11. ESA, ARMA Reference Model of the Atmosphere, Tech. Rep. APP-FP/99-11239/AC/ac (European Space Agency, 1999). [Google Scholar]
  12. Simonetti, F., A. Zuccaro Marchi, L. Gambicorti, V. Bratina, P. Mazzinghi, 2010: Opt. Eng. 49, 073001. [CrossRef] [Google Scholar]
  13. Hammann E., and A. Behrendt, 2015: Parametrization of optimum filter passbands for rotational Raman temperature measurements, Opt. Express 23, 30767-30782. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.