Open Access
Issue
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
Article Number 04010
Number of page(s) 4
Section Lidar applications in Weather/Meteorology, air quality and climate-global change
DOI https://doi.org/10.1051/epjconf/201817604010
Published online 13 April 2018
  1. Vomel, H., H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdes, E. Kyro, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz,2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953-963. [NASA ADS] [CrossRef] [Google Scholar]
  2. Whiteman, D. N., 2003a: Examination of the traditional Raman lidar technique. I. . Evaluating the temperature-dependent lidar equations, Appl.Optics,42,2571-2592. [CrossRef] [PubMed] [Google Scholar]
  3. Behrendt, A. and Reichardt, J.: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator, Appl Optics,39,1372-1378,2000. [CrossRef] [PubMed] [Google Scholar]
  4. Di Girolamo, P., R. Marchese, D. N. Whiteman, B. B. Demoz, 2004: Rotational Raman Lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett. 31,doi:10.1029/2003GL018342. [CrossRef] [Google Scholar]
  5. Di Girolamo, P., A. Behrendt, and V. Wulfmeyer, 2006. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations, Appl. Opt. 45, 2474-2494, doi:10.1364/AO.45.002474. [CrossRef] [PubMed] [Google Scholar]
  6. Bhawar, R., P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, Müller, D., S. Pal, M. Wirth, V. Wulfmeyer, 2011: The Water Vapour Intercomparison Effort in the Framework of the Convective and Orographically-Induced Precipitation Study: Airborne-to-Ground-based and airborne-to-airborne Lidar Systems, Quarterly Journal of the Royal Meterological Society 137,325-348. [CrossRef] [Google Scholar]
  7. Di Girolamo P., D. Summa, R.-F Lin, T. Maestri, R. Rizzi, G. Masiello, 2009: UV Raman Lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties, Atmos. Chem. Phys. 9, 8799-8811, doi: 10.5194/acp-9-8799-2009. [CrossRef] [Google Scholar]
  8. Di Girolamo, P., C. Flamant, M. Cacciani, E. Richard, V. Ducrocq, D. Summa, D. Stelitano, N. Fourrié and F. Saïd, 2016: Observation of low-level wind reversals in the Gulf of Lion area and their impact on the water vapour variability, Q. J. Roy. Meteor. Soc. 142 (Suppl 1), 153-172, doi: 10.1002/qj.2767. [CrossRef] [Google Scholar]
  9. P. Di Girolamo, D. Summa, B. De Rosa, M. Cacciani, A. Scoccione, A. Behrendt, V. Wulfmeyer, 2017: Characterization of Boundary Layer Turbulent Processes by Raman Lidar: Demonstration of the Measurement Capabilities of the Raman Lidar System BASIL, Atmos. Chem. Phys. 17, 745-767, doi:10.5194/acp-17-745-2017. [CrossRef] [Google Scholar]
  10. Whiteman, D. N., 2003b Examination of the traditional Raman lidar technique. II. . Evaluating the ratios for water vaour and aerosols.temperature-dependent lidar equations, Appl.Optics,42,2593-2608. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.