Open Access
Issue
EPJ Web Conf.
Volume 176, 2018
The 28th International Laser Radar Conference (ILRC 28)
Article Number 05006
Number of page(s) 4
Section Lidars applications in atmospheric structure and composition: Aerosols, clouds, trace gases
DOI https://doi.org/10.1051/epjconf/201817605006
Published online 13 April 2018
  1. Nathan, R., Meltzer, E., Selner, J., and Storms, W.: Prevalence of allergenic rhinitis in the United States, J. Allergy Clin. Imm., 99, 808– 814, 1997. [CrossRef] [Google Scholar]
  2. WHO (World Health Organization), Phenology and human health: allergic disorders, Copenhagen, WHO Regional Office for Europe, 55 pp., 2003. [Google Scholar]
  3. Beggs, P. J.: Impacts of climate change on aeroallergens: past and future, Clin. Exp. Allergy, 34, 1507–1513, 2004. [CrossRef] [PubMed] [Google Scholar]
  4. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., and van Cauwenber, P.: Allergenic pollen and pollen allergy in Europe, Allergy, 62, 976–990, 2007. [CrossRef] [PubMed] [Google Scholar]
  5. Veriankanité, L., Siljamo, P., Sofiev, M., Šauliene, I., and Kukkonen, J.: Modeling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania, Aerobiologia, 26, 47–62, 2010. [CrossRef] [Google Scholar]
  6. Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., Rantio-Lehtimäki, A., Severova, E., and Kukkonen, J.: A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module, Int. J. Biometeorol., 57, 45–58, doi: 10.1007/s00484-012-0532-z, 2013. [CrossRef] [PubMed] [Google Scholar]
  7. Zhang, R., Duhl, T., Salam, M.T., House, J.M., Flagan, R. C., Avol, E.L., Gilliland, F.D., Guenther, A., Chung, S. H., Lamb, B.K., and VanReken, T.M., Development of a regionalscale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease, Biogeosciences 11, 1461–1478, doi:10.5194/bg-11-1461-2014, 2014. [CrossRef] [Google Scholar]
  8. M. Sicard, R. Izquierdo, M. Alarcón, J. Belmonte, A. Comerón, J. M. Baldasano, Nearsurface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain, Atmospheric Chemistry and Physics, vol. 16, issue 11, pp. 6805-6821, doi: 10.5194/acp-16-6805-2016, 2016. [Google Scholar]
  9. M. Sicard, R. Izquierdo, O. Jorba, M. Alarcón, J. Belmonte, A. Comerón, J. M. Baldasano, Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain, Proc. SPIE 10001, 100010L, A. Comerón, E. I. Kassianov, K. Schäfer, J. W. Jack, R. H. Picard, K. Weber (Ed.), SPIE, Washington (EE.UU.), doi: 10.1117/12.2244517, Edinburgh, United Kingdom, 26 – 29 September 2016. [Google Scholar]
  10. Flynn, C. J., Mendoza, A., Zheng, Y., and Mathur, S., “Novel polarization-sensitive micropulse lidar measurement technique”, Optics Express 15(6), 2785-2790 (2007). [CrossRef] [PubMed] [Google Scholar]
  11. Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K., Uchiyama, A., and Yamazaki, A.: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, J. Geophys. Res., 109, D19S17, doi: 10.1029/2002JD003253, 2004. [CrossRef] [Google Scholar]
  12. Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Black, T., Basart, S., Nickovic, S., and Miller, R.L., “Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 1: Model description, annual simulations and evaluation”, Atmospheric Chemistry and Physics 11, 13001–13027 (2011). [CrossRef] [Google Scholar]
  13. Jorba, O., Dabdub, D., Blaszczak-Boxe, C., Pérez, C., Janjic, Z., Baldasano, J. M., Spada, M., Badia, A., and Gonçalves, M., “Potential significance of photoexcited NO2 on global air quality with the NMMB/BSC chemical transport model”, Journal of Geophysical Research 117(D13301), 1-16 (2012). [CrossRef] [Google Scholar]
  14. Williams, C.G., “Conifer reproductive biology. Springer”, New York, 167 pp. (2009). [Google Scholar]
  15. Bricchi, E., Frenguelli, G., Mincigrucci, G., “Experimental results about Platanus pollen deposition”, Aerobiologia 16, 347–352 (2000). [CrossRef] [Google Scholar]
  16. Jackson, S.T., and Lyford, M.E., “Pollen Dispersal Models in Quaternary Plant Ecology: Assumptions, Parameters, and Prescriptions”, The Botanical Review 65(1), 39-75 (1999). [CrossRef] [Google Scholar]
  17. Pérez, C., Nickovic, S., Baldasano, J. M., Sicard, M., Rocadenbosch, F., and Cachorro, V. E.: A long Saharan dust event over the western Mediterranean: Lidar, sun photometer observations, and regional dust modeling, J. Geophys. Res., 111, D15214, doi:10.1029/2005JD006579, 2006. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.