Open Access
Issue
EPJ Web Conf.
Volume 180, 2018
EFM17 – Experimental Fluid Mechanics 2017
Article Number 02065
Number of page(s) 12
Section Contributions
DOI https://doi.org/10.1051/epjconf/201818002065
Published online 04 June 2018
  1. Deere, K., Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center, in 21st AIAA Applied Aerodynamics Conference (2003), Vol. 2003-3800 [Google Scholar]
  2. Deere, K., Computational Investigation of the Aerodynamic Effects on Fluidic thrust Vectoring, in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2000), Vol. 2000-3598 [Google Scholar]
  3. Deere, K., A Computational Study of a New Dual Throat Fluidic Thrust Vectoring, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2005), Vol. 2005-3502 [Google Scholar]
  4. Mason, M., S., Crowther, W.J., Fluidic Thrust Vectoring of Low Observable Aircraft, in CEAS Aerospace Aerodynamic Research Conference (2002) [Google Scholar]
  5. Jackson, D. N., Smith, B.L., J. Fluid Eng. 129, 902 (2007) [CrossRef] [Google Scholar]
  6. Bettridge, M.W., Smith B.L., Spall, R.E., Exp. Fluids 40, 776 (2006) [CrossRef] [Google Scholar]
  7. Walker, S., Lessons learned in the development of a national cooperative program, in 33rd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences (1997) [Google Scholar]
  8. Hammond, D.A., Redekopp, L.G., J. Fluid Mech 338, 231 (1997) [CrossRef] [Google Scholar]
  9. Smith, B.L., Glezer, A., Bull. Am. Phys. Soc. 39, 1894 (1994) [Google Scholar]
  10. Smith, B.L., Glezer, A., AIA Journal 43, 2117 (2005) [CrossRef] [Google Scholar]
  11. Heo, J.-Y., Yoo, K.-H., Lee, Y., Sung, H.-G., Cho, S.-H., Jeon, Y.-J., Journal of Propulsion and Power 28, 858 (2012) [CrossRef] [Google Scholar]
  12. Strykowski, P. J., Krothapalli, A., Forliti, D. J., AIA Journal 34, 2306 (1996) [CrossRef] [Google Scholar]
  13. Flamm, J. D., Experimental study of a nozzle using fluidic counterflow for thrust vectoring, in 34th Joint Propulsion Conferences (1998), Vol. 98-3255 [Google Scholar]
  14. Hunter, C.A., Deere, K.A., Computational Investigation of Fluidic Counterflow Thrust Vectoring, in 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences (1999), Vol. 99-2669 [Google Scholar]
  15. Humes, Z., Smith, B.L., Minichiello, A.L., Particle sosorting by aerodyamic vectoring, in Bull. Am. Phys. Soc. (2005) [Google Scholar]
  16. B. Newman, Boundary Layer and Flow Control Principles and Applications (Pergamon Press Inc., 1961), Vol. 1, chap. The deflection of Plane Jets by Adjacent Boundaries- Coanda Effect, pp. 232-264 [Google Scholar]
  17. Bradshaw, P., Tech. rep., AGARDograph n 169 (1973) [Google Scholar]
  18. Carpenter, P.W., Green, P.N., Journal of Sound and Vibration 208, 777 (1997) [CrossRef] [Google Scholar]
  19. Smith, B.L., Glezer, A., J. Fluid Mech 458, 1 (2002) [CrossRef] [Google Scholar]
  20. Bremhorst, K., Hollis, P.G., AIAA Journal AIAA 973348, 2043 (1990) [CrossRef] [Google Scholar]
  21. Pack, L.G., Seifer, A., Journal of Aircraft 38, 486 (2001) [CrossRef] [Google Scholar]
  22. Al-Asady, A.A.A., Abdullah, A.M., NJES 20, 5 (2017) [Google Scholar]
  23. Saghafi, F., Banazadeh, A., The Aeronautical Journal 3117, 17 (2008) [Google Scholar]
  24. Saghafi, F., Banazadeh, A., Coanda Surface Geometry Optimization for Multi-Directional Co-flow Flu-idic Thrust Vectoring, in Proceedings ofASME Turbo Expo 2009 (2009) [Google Scholar]
  25. Song, M.J., Yoon, S.H., Chang, H.B., Cho, Y.H., Lee, Y., A Study on the Performance of the Fluidic Thrust Vector Control Utilizing Supersonic Coanda Effects, in 5th Symposium on Integrating CFD and Experiments in Aerodynamics (2012), pp. 253-261 [Google Scholar]
  26. Zmijanovic, V., Lago, V., Leger, L., Depussay, E., Sel-lam, M., Chpoun, A., Progress in Propulsion Physics 4, 227 (2013) [CrossRef] [Google Scholar]
  27. Bharathwaj, R., Giridharan, P., Karthick, K., Prasath, C.H., Prakash, K.,M., IOP Conf. Ser.: Mater. Sci. Eng. 149, 012210 (2016) [CrossRef] [Google Scholar]
  28. Trancossi, M., Dumas, A., SAE Technical Papers (2011) [Google Scholar]
  29. Kirshner, J.M., Katz, S., Design Theory ofFlFluidic Components (Academic Press, 1975) [Google Scholar]
  30. Dumitrache, A., Frunzulica, F., Ionescu, T.C., in Non-linearity, Bifurcation and Chaos - Theory and Applications, edited by Awrejcewicz, J., Hagedorn, P.(InTech, 2012) [Google Scholar]
  31. Reichardt, H., Z. Angew. Math. Mech. 21 (1941) [Google Scholar]
  32. Schlichting, H., Boundary-Layer Theory (McGraw-Hill, 1960) [Google Scholar]
  33. S.L. Abramovich, G.N., The Theory of Turbulent Jets (The MIT Press, 1963) [Google Scholar]
  34. Menter, F.R., AIAA Journal 32, 1598 (1994) [NASA ADS] [CrossRef] [Google Scholar]
  35. Versteeg, H.K., Malalasekera, W., An Introduction to Computational Fluid Dynamics (Longman Scientific & Technical, 1995) [Google Scholar]
  36. Mendez, M.A., Buchlin, J.-M., Quantitative flow visualization of confinement-driven instabilities of an impinging slot jet, in 11th International Symposium on Particle Image Velocimetry (PIV2015) (Santa Barbara, California, US, 2015) [Google Scholar]
  37. Mendez, M.A., Scelzo, M.T., Buchlin, J.-M., Exp Therm Fluid Sci 91, 256(2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.