Open Access
Issue
EPJ Web Conf.
Volume 180, 2018
EFM17 – Experimental Fluid Mechanics 2017
Article Number 02084
Number of page(s) 7
Section Contributions
DOI https://doi.org/10.1051/epjconf/201817002084
Published online 04 June 2018
  1. Navier C. L. M. H., “Memoire Surles du Movement des.” Mem Acad. Sci. Inst. France, vol. 1, No. 6, pp. 414-416. (1823) [Google Scholar]
  2. Grunceli BRK, Sandham ND and McHale G. Simulation of laminar flow past a superhydrophobic sqhere with drag reduction and separation delay. Phys Fluids 2013; 25: 043601. [CrossRef] [Google Scholar]
  3. Thomas Young: An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London. Vol. 95 (1805), 65-87. [CrossRef] [Google Scholar]
  4. Vakarelski I. U., Chan D. Y. C., Marston J. O., Thoroddsen S. T.: Dynamic Air Layer on Textured Superhydrophobic Surfaces, Langmuir, 2013, 29 (35), pp 11074-11081 [CrossRef] [PubMed] [Google Scholar]
  5. Jaaková, D., Nemcová, L., Kopecky V., The Methodic for Study of Smart Surfaces Using PIV Technique. AIP Conf. Proc. vol. 80, nr. 8. pp. 80-87 (2014) [Google Scholar]
  6. Fialová, S.; Pochylý, F.; Kotek, M.; Jašíková, D.: Velocity profiles of fluid flow close to a hydrophobic surface, EPJ Web of Conferences 143, 02023 (2017) DOI: 10.1051/epjconf/201714302023 [CrossRef] [EDP Sciences] [Google Scholar]
  7. Fialová, S., Pochylý, F., Havlásek, M., Malík, J.: Influence of boundary conditions on fluid flow on hydrophobic surfaces, AIP Conf. Proc - 36th Meeting of Departments of Fluid Mechanics and Thermodynamics (2017) [Google Scholar]
  8. Fialová, S.; Pochylý, F.: Identification and Experimental verification of the adhesive coefficient of hydrophobic materials, Wasserwirtschaft Extra, 1/2015, ISSN 0043 0978, pp. 125-129 [Google Scholar]
  9. Mohammadi, B., & Pironneau, O. (1993). Analysis of the K-epsilon turbulence model. France: Editions MASSON. [Google Scholar]
  10. Mansour, N. N.; Kim, J.; Moin, P. Near-wall k-epsilon turbulence modeling, 6th Symposium on Turbulent Shear Flows, France, Proceedings (A88-38951 15-34). University Park, PA, Pennsylvania (1987), p. 17-4-1 to 17-4-6. [Google Scholar]
  11. Kučera, R.; Šátek, V.; Haslinger, J.; Fialová, S.; Pochylý, F. Modelling of Hydrophobic Surfaces by the Stokes Problem with the Stick- Slip Boundary Conditions. Journal of Fluids Engineering-Transactions of the ASME, 2017, vol. 139, no. 1, p. 0112021-0112029. ISSN: 0098-2202. [Google Scholar]
  12. Volkov AV, Parygin AG, Lukin MV, et al. Analysis of the effect of hydrophobic properties of surfaces in the flow part of centrifugal pumps on their operational performance. Therm Eng 2015; 62: 817-824. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.