Open Access
Issue
EPJ Web of Conferences
Volume 181, 2018
International Conference on Exotic Atoms and Related Topics - EXA2017
Article Number 01032
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/201818101032
Published online 25 June 2018
  1. V.N.Baier and V.S.Synakh, Bimuonium production in electron-positron collisions, SOVIET PHYSICS JETP, 14, N5, 1962, pp.1122-1125. [Google Scholar]
  2. H. Lamm, True muonium: the atom that has it all, arXiv 1509.09306v1, 30 Sep 2016. [Google Scholar]
  3. H. Lamm and R.F. Lebed, True Muonium (μ+μ) on the Light Front, arXiv hep-ph/1311.3245v3, 12 Nov 2014. [Google Scholar]
  4. L.L. Nemenov. Atomic decays of elementary particles. Yad. Fiz., 15:1047-1050, 1972. [Google Scholar]
  5. J.W. Moffat. Does a Heavy Positronium Atom Exist? Phys. Rev. Lett., 35:1605, 1975. [CrossRef] [Google Scholar]
  6. E. Holvik and H.A. Olsen. Creation of Relativistic Fermionium in Collisions of Electrons with Atoms. Phys. Rev., D35:2124, 1987. [Google Scholar]
  7. G.A. Kozlov. On the problem of production of relativistic lepton bound states in the decays of light mesons. Sov. J. Nucl. Phys., 48:167-171, 1988. [Google Scholar]
  8. I.F. Ginzburg, U.D. Jentschura, S.G. Karshenboim et al. Production of bound μ+μ systems in relativistic heavy ion collisions. Phys. Rev., C58:3565-3573, 1998. [Google Scholar]
  9. N. Arteaga-Romero, C. Carimalo, and V.G. Serbo. Production of bound triplet μ+μ system in collisions of electrons with atoms. Phys. Rev., A62:032501, 2000. [CrossRef] [Google Scholar]
  10. S.J. Brodsky and R.F. Lebed. Production of the Smallest QED Atom: True Muonium (μ+μ). Phys. Rev. Lett., 102:213401, 2009. [CrossRef] [PubMed] [Google Scholar]
  11. Y.Chen and P.Zhuang. Dimuonium (μ+μ) Production in a Quark-Gluon Plasma. 2012. [Google Scholar]
  12. A.Banburski and P.Schuster. The Production and Discovery of True Muonium in Fixed-Target Experiments. Phys. Rev., D86:093007, 2012. [Google Scholar]
  13. S.C. Ellis and J. Bland-Hawthorn. On the possibility of observable signatures of leptonic onium atoms from astrophysical sources. 2015. [Google Scholar]
  14. H. Lamm, True muonium on the light front, PhD Dissertation, Arizona State University, May 2016, 115 pages. [Google Scholar]
  15. A. Bogomyagkov and E. Levichev. Collision monochromatization in e+e colliders, Phys. Rev. Accel. Beams 20, 051001, May 2017. [CrossRef] [Google Scholar]
  16. V.P. Druzhinin, private communication, March 2017. [Google Scholar]
  17. J.R.Rees, Longitudinal effects of colliding beam space charge force in electron-positron storage rings with crossing angles. SLAC-PUB-781, July 1970. [Google Scholar]
  18. V.V. Danilov et al. Longitudinal effects in beam-beam interaction for an ultra-high luminosity regime. Workshop on beam radiation interaction, UCLA, May 13-16, 1991, World Scientific, pp.1-10. [Google Scholar]
  19. A. Drago et al. Synchrotron oscillation damping by beam-beam collision in DAΦNE, PRST AB 14, 092803 (2011). [Google Scholar]
  20. D. Shatilov, Beam-beam simulation at large amplitudes and lifetime determination. Part. Accel. 52, p.65, 1996. [Google Scholar]
  21. D.E. Berkaev et al., “VEPP-5 Injection Complex: Two Colliders Operation Experience”, in Proc. 8th Int. Part.Acc.Conf. (IPAC'17), Copenhagen, Denmark, May 2017, pp. 2982-2984. [Google Scholar]
  22. P. Raimondi et al. Beam-Beam Issues for Colliding Schemes with Large Piwinski Angle and Crabbed Waist, LNF-07/003 (IR) 2007. [Google Scholar]
  23. M. Hosaka et al., Nucl.Instr.Meth. A407 (1998) 234-240. [CrossRef] [Google Scholar]
  24. M. Zobov et al., DAΦNE experience with negative momentum compaction, Proc.of EPAC 2006, Edinburgh, Scotland, 989-991. [Google Scholar]
  25. D. Einfeld et al. Design of a Diffraction Limited Light Source (DIFL), in Proc of PAC’95, Dallas, USA (1996) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.