Open Access
Issue
EPJ Web Conf.
Volume 182, 2018
6th International Conference on New Frontiers in Physics (ICNFP 2017)
Article Number 02005
Number of page(s) 26
Section Talks
DOI https://doi.org/10.1051/epjconf/201818202005
Published online 03 August 2018
  1. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, “New dimensions at a millimeter to a Fermi and superstrings at a TeV,” Phys. Lett. B 436 (1998) 257 [arXiv:hep-ph/9804398]. [NASA ADS] [CrossRef] [Google Scholar]
  2. I. Antoniadis and S. P. Patil, Eur. Phys. J. C75 (2015) 182 [arXiv:1410.8845 [hep-th]]. [CrossRef] [Google Scholar]
  3. I. Antoniadis and R. Knoops, Nucl. Phys. B 886 (2014) 43 [arXiv:1403.1534 [hep-th]]. [Google Scholar]
  4. F. Catino, G. Villadoro and F. Zwirner, JHEP 1201 (2012) 002 [arXiv:1110.2174 [hep-th]], [CrossRef] [Google Scholar]
  5. G. Villadoro and F. Zwirner, Phys. Rev. Lett. 95 (2005) 231602 [hep-th/0508167]. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. I. Antoniadis, D. M. Ghilencea and R. Knoops, JHEP 1502 (2015) 166 [arXiv:1412.4807 [hepth]]. [CrossRef] [Google Scholar]
  7. I. Antoniadis and R. Knoops, Nucl. Phys. B 902 (2016) 69 [arXiv:1507.06924 [hep-ph]]. [CrossRef] [Google Scholar]
  8. L. Randall and R. Sundrum, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155], [Google Scholar]
  9. G. F. Giudice, M. A. Luty, H. Murayama and R. Rattazzi, JHEP 9812 (1998) 027 [hepph/9810442]. [CrossRef] [Google Scholar]
  10. J. A. Bagger, T. Moroi and E. Poppitz, JHEP 0004 (2000) 009 [hep-th/9911029]. [CrossRef] [Google Scholar]
  11. I. Antoniadis and T. Maillard, “Moduli stabilization from magnetic fluxes in type I string theory,” Nucl. Phys. B 716 (2005) 3 [hep-th/0412008]; [CrossRef] [Google Scholar]
  12. I. Antoniadis, A. Kumar and T. Maillard, “Magnetic fluxes and moduli stabilization,” Nucl. Phys. B 767 (2007) 139 [hep-th/0610246]. [CrossRef] [Google Scholar]
  13. I. Antoniadis, J.-P. Derendinger and T. Maillard, “Nonlinear N=2 Supersymmetry, Effective Actions and Moduli Stabilization,” Nucl. Phys. B 808 (2009) 53 [arXiv:0804.1738 [hep-th]]. [CrossRef] [Google Scholar]
  14. I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, “Inflation from Supergravity with Gauged R-symmetry in de Sitter Vacuum,” Eur. Phys. J. C 76 (2016) no.12, 680 [arXiv:1608.02121 [hep-ph]]. [CrossRef] [EDP Sciences] [Google Scholar]
  15. A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23 (1981) 347; [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys. Lett. 108B (1982) 389; [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett. 48 (1982) 1220. [NASA ADS] [CrossRef] [Google Scholar]
  18. D. H. Lyth and A. Riotto, “Particle physics models of inflation and the cosmological density perturbation,” Phys. Rept. 314 (1999) 1 [hep-ph/9807278]; [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. A. D. Linde, “Particle physics and inflationary cosmology,” Contemp. Concepts Phys. 5 (1990) 1 [hep-th/0503203]. [Google Scholar]
  20. A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett. 91B (1980) 99. [NASA ADS] [CrossRef] [Google Scholar]
  21. L. Randall and S. D. Thomas, “Solving the cosmological moduli problem with weak scale inflation,” Nucl. Phys. B 449 (1995) 229 [hep-ph/9407248]; [CrossRef] [Google Scholar]
  22. A. Riotto, “Inflation and the nature of supersymmetry breaking,” Nucl. Phys. B 515 (1998) 413 [hep-ph/9707330]: [CrossRef] [Google Scholar]
  23. K. I. Izawa, “Supersymmetry-breaking models of inflation,” Prog. Theor. Phys. 99 (1998) 157 [hep-ph/9708315]; [CrossRef] [Google Scholar]
  24. W. Buchmuller, L. Covi and D. Delepine, “Inflation and supersymmetry breaking,” Phys. Lett. B 491 (2000) 183 [hep-ph/0006168]. [CrossRef] [Google Scholar]
  25. I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, “Inflation from Supersymmetry Breaking,” Eur. Phys. J. C 77 (2017) no.11, 724 [arXiv:1706.04133 [hep-th]]. [CrossRef] [EDP Sciences] [Google Scholar]
  26. D. Z. Freedman and A. Van Proeyen, Cambridge, UK: Cambridge Univ. Pr. (2012) 607 p. [Google Scholar]
  27. P. Fayet and J. Iliopoulos, Phys. Lett. B 51 (1974) 461; [Google Scholar]
  28. P. Fayet, Phys. Lett. B 69 (1977) 489. [CrossRef] [Google Scholar]
  29. I. Antoniadis, J.-P. Derendinger and T. Maillard, Nucl. Phys. B 808 (2009) 53 [arXiv:0804.1738 [hep-th]]. [CrossRef] [Google Scholar]
  30. J. Polonyi, Hungary Central Inst Res-KFKI-77-93 (77,REC.JUL 78) 5p. [Google Scholar]
  31. H. P. Nilles, Phys. Rept. 110 (1984) 1, [CrossRef] [Google Scholar]
  32. S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Nucl. Phys. B 223 (1983) 191, [Google Scholar]
  33. J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, Phys. Lett. B 573 (2003) 162 [hepph/0305212], [Google Scholar]
  34. T. Gherghetta, G. F. Giudice and J. D. Wells, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378]. [Google Scholar]
  35. P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results. XX. Constraints on inflation,” arXiv:1502.02114 [astro-ph.CO]. [Google Scholar]
  36. D. Baumann and D. Green, “Signatures of Supersymmetry from the Early Universe,” Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292 [hep-th]]. [NASA ADS] [CrossRef] [Google Scholar]
  37. K. Schmitz and T. T. Yanagida, “Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation,” Phys. Rev. D 94 (2016) no.7, 074021 [arXiv:1604.04911 [hep-ph]]. [CrossRef] [Google Scholar]
  38. P. Binetruy and G. R. Dvali, “D term inflation,” Phys. Lett. B 388 (1996) 241 [hep-ph/9606342]. [CrossRef] [Google Scholar]
  39. C. Wieck and M. W. Winkler, “Inflation with Fayet-Iliopoulos Terms,” Phys. Rev. D 90 (2014) no.10, 103507 [arXiv:1408.2826 [hep-th]]; [CrossRef] [Google Scholar]
  40. V. Domcke and K. Schmitz, “Unified model of D-term inflation,” Phys. Rev. D 95 (2017) no.7, 075020 [arXiv:1702.02173 [hep-ph]]. [CrossRef] [Google Scholar]
  41. D. V. Volkov and V. P. Akulov, Is the neutrino a Goldstone particle?; Phys. Lett. B 46 (1973) 109; [CrossRef] [Google Scholar]
  42. M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451; [CrossRef] [Google Scholar]
  43. U. Lindström, M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300; [CrossRef] [Google Scholar]
  44. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569; [CrossRef] [MathSciNet] [Google Scholar]
  45. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 0909 (2009) 066; [arXiv:0907.2441 [hep-th]]; [CrossRef] [Google Scholar]
  46. S. M. Kuzenko and S. J. Tyler, On the Goldstino actions and their symmetries, JHEP 1105, (2011) 055: [arXiv:1102.3043 [hep-th]]. [CrossRef] [Google Scholar]
  47. L. Alvarez-Gaume, C. Gomez and R. Jimenez, “Minimal Inflation,” Phys. Lett. B 690 (2010) 68 [arXiv:1001.0010 [hep-th]]; [CrossRef] [Google Scholar]
  48. L. Alvarez-Gaume, C. Gomez and R. Jimenez, “A Minimal Inflation Scenario,” JCAP 1103 (2011) 027 [arXiv:1101.4948 [hep-th]]; [CrossRef] [Google Scholar]
  49. S. Ferrara and D. Roest, “General sGoldstino Inflation,” JCAP 1610 (2016) no.10, 038 [arXiv:1608.03709 [hep-th]]. [CrossRef] [Google Scholar]
  50. E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, “False vacuum inflation with Einstein gravity,” Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011]. [NASA ADS] [CrossRef] [Google Scholar]
  51. D. Baumann and L. McAllister, “Inflation and String Theory,” arXiv:1404.2601 [hep-th]; [Google Scholar]
  52. M. Cicoli and F. Quevedo, “String moduli inflation: An overview,” Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659 [hep-th]]. [CrossRef] [Google Scholar]
  53. G. R. Dvali, Q. Shafi and R. K. Schaefer, “Large scale structure and supersymmetric inflation without fine tuning,” Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319]. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  54. L. Boubekeur and D. H. Lyth, “Hilltop inflation,” JCAP 0507 (2005) 010 [hep-ph/0502047]. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.