Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01019
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301019
Published online 07 September 2018
  1. C.B. Skidmore, D.S. Phillips, P.W. Howe, J.T. Mang, J.A. Romero, In: Short J. M., Kennedy J. E. (Eds.), Proceedings of the 11th Detonation Symposium. Snowmass Village, Colorado (1998) [Google Scholar]
  2. S. Ye, K. Tonokura, M. Koshi, Combustion & Flame, 132,1–2 (2003) [CrossRef] [Google Scholar]
  3. B.E. Clements, E.M.Mas, Modelling & Simulation in Materials Science & Engineering, 12, 12 (2004) [CrossRef] [Google Scholar]
  4. M.R. Baer, Thermochimica Acta, 384,1–2 (2002) [CrossRef] [Google Scholar]
  5. S.J.P Palmer, J.E. Field, J.M. Huntley, Proceedings Mathematical & Physical Sciences, 440, 1909 (1993) [Google Scholar]
  6. M. Li, J. Zhang, C.Y. Xiong, J. Fang, J.M. Li, Y. Hao, Optics and Lasers in Engineering, 43 (2005) [Google Scholar]
  7. Liu Z W, Xie H M, Li K X, Chen P W, Huang F L. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads.Polymer Testing, 28: 627– 635 (2009) [CrossRef] [Google Scholar]
  8. Chen P, Xie H, Huang F, Huang T, Ding Y. Deformation and failure of polymer bonded explosives under diametric compression test, Polymer Testing, 25 (3): 333–341 (2006) [Google Scholar]
  9. Chen P, Huang F, Ding Y. Microstructure, deformation and failure of polymer bonded explosives, Journal of Materials Science, 42 (13): 5272–5280 (2007) [CrossRef] [Google Scholar]
  10. Pengwan Chen, Zhongbin Zhou, Shaopeng Ma, Qinwei Ma, Fenglei Huang. Measurement of dynamic fracture toughness and failure behavior for explosive mock materials, Front Mech Eng., 6 (3): 292–295 (2011) [Google Scholar]
  11. Li Jun-Ling, Fu Hua, Tan Duo-Wang, Lu Fang-Yun and Chen Rong. Fracture Behaviour Investigation into a Polymer-Bonded Explosive, Strain 48, 463–473 (2012) [CrossRef] [Google Scholar]
  12. Zubelewicz A, Thompson D G, Ostojastarzewski M, et al. Fracture model for cemented aggregates, AIP Advances, 3 (1): 3275 (2013) [CrossRef] [Google Scholar]
  13. Danzhu Ma, Pengwan Chen, Qiang Zhou and Kaida Dai. Ignition criterion and safety prediction of explosives under low velocity impact. Journal of Applied Physics, 114 (11): 405-408 (2013) [Google Scholar]
  14. Berghout H L, Son S F, Skidmore C B, et al. Combustion of damaged PBX 9501 explosive. Thermochimica Acta, 384(1-2): 261-277 (2002) [CrossRef] [Google Scholar]
  15. Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives. Journal of the Mechanics & Physics of Solids, 46 (12): 2303-2322 (1998) [CrossRef] [Google Scholar]
  16. Dienes J K, Zuo Q H, Kershner J D. Impact initiation of explosives and propellants via statistical crack mechanics. Journal of the Mechanics & Physics of Solids, 54 (6): 1237-1275 (2006) [CrossRef] [Google Scholar]
  17. Belmas R and Reynier P. Mechanical behavior of pressed explosives, International Symposium Energetic Materials Technology Florida, March 21-23, 1994: 360-365 (1994) [Google Scholar]
  18. Ellis K, Leppard C, Radesk H. Mechanical properties and damage evaluation of a UK PBX. Journal of Materials Science, 40 (23): 6241-6248 (2005) [CrossRef] [Google Scholar]
  19. D.G. Thompson, G.T. Gray III, W.R. Blumenthal, C.M. Cady, W.J. Wright, B. Jacquez, LA-UR-02-6592 (2002) [Google Scholar]
  20. D. Picart, J.L. Brigolle, Materials Science and Engineering, A 527(2010) [Google Scholar]
  21. Viet Dung Le, Michel Gratton, Michael Caliez, Arnaud Frachon, Didier Picart. Experimental mechanical characterization of plastic-bonded explosives. Journal of Materials Science, 45: 5802–5813 (2010) [CrossRef] [Google Scholar]
  22. Picart D, Benelfellah A, Brigolle J L, Frachon A, Gratton M, Caliez M. Characterization and modeling of the anisotropic damage of a high-explosive composition. Engineering Fracture Mechanics, 131: 525–537 (2014) [CrossRef] [Google Scholar]
  23. Asay B W. Non-Shock Initiation of Explosives (Shock Wave Science and Technology Reference Library, Vol. 5, Springer-Verlag, Berlin Heidelberg, 2010) [CrossRef] [Google Scholar]
  24. Trumel H, Lambert P, Belmas R. Mesoscopic investigations of the deformation and initiation mechanisms of a HMX-based pressed composition, in Proceedings of the 14th Detonation Symposium, Coeur d’Alene, USA (2010) [Google Scholar]
  25. Gilles Pijaudier-Cabot, Zdenek Bittnar, Bruno Gerard. Mechanics of Quasi-Brittle Materials and Structures (HERMES Science Publications, Paris, 1999) [Google Scholar]
  26. Liu C, Thompson D G. Crack Initiation and Growth in PBX 9502 High Explosive Subject to Compression. Journal of Applied Mechanics, 81 (10): 212-213 (2014) [Google Scholar]
  27. Van de Steen B, Vervoort A, and Napier J A L. Observed and simulated fracture pattern in diametrically loaded discs of rock material. International Journal of Fracture, 131: 35–52 (2005) [CrossRef] [Google Scholar]
  28. Lemaitre J, Desmorat R. Engineering Damage Mechanics-Ductile, Creep, Fatigue and Brittle Failures (Springer-Verlag, Berlin, Heidelberg, 2005) [Google Scholar]
  29. Xicheng Huang, Chengjun Chen, Gang Chen, Ming Liu. Analysis of deformation and failure of polymer-bonded explosives using coupled plastic damage model (Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 2015) [Google Scholar]
  30. Ionita A, Clements B E, Zubelewicz A, et al. Direct numerical simulations to investigate the mechanical response of energetic materials, Los Alamos National Laboratory, Los Alamos, NM, LA-UR-11-02598 (2011) [Google Scholar]
  31. Toro S, Sánchez P J, Blanco P J, de Souza Neto E A, Huespe A E, Feijóo R A. Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales. International Journal of Plasticity, 76: 75-110 (2016) [CrossRef] [Google Scholar]
  32. Y.Q. Wu, F.L. Huang, Mechanics of Materials, 41,1 (2009) [CrossRef] [Google Scholar]
  33. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 (5): 601-620 (1999) [CrossRef] [Google Scholar]
  34. Zhuang Zuo. Extended Finite Element Method. Tsinghua University Press, 2012 (in Chinese) [Google Scholar]
  35. Yu Tiantang. Extended Finite Element Method-Theory, Application and Programming. Science Press, 2014 (in Chinese) [Google Scholar]
  36. Pommier S, Gravouil A, Combescure A, Nicolas Moës. Extended Finite Element Method for Crack Propagation. John Wiley & Sons, Inc. 173-226 (2013) [Google Scholar]
  37. Tian Rong, Wen Longfei. Improved XFEM-An extra-dof free, well-conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 285: 639-658 (2015) [CrossRef] [Google Scholar]
  38. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 (5): 601-620 (1999) [CrossRef] [Google Scholar]
  39. Melenk J M, Babuška I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics & Engineering, 139 (1– 4): 289-314 (1996) [CrossRef] [MathSciNet] [Google Scholar]
  40. Barenblatt G I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, 7: 55-129 (1962) [CrossRef] [Google Scholar]
  41. Jeong Hoon Song, Areias P M A. and Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 67 (6): 868-893 (2006) [CrossRef] [Google Scholar]
  42. Remmers J J C, Borst R D, Needleman A. Needleman, A.: The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids 56 (1), 70-92 (2008) [CrossRef] [Google Scholar]
  43. Lawn B R. Fracture of Brittle Solids (Cambridge University Press, second edition, 1993) [CrossRef] [Google Scholar]
  44. Needleman A. An analysis of decohesion along an imperfect interface. International Journal of Fracture, 42 (1): 21-40 (1990) [CrossRef] [Google Scholar]
  45. Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement & Concrete Research, 6 (6): 773-781 (2008) [CrossRef] [Google Scholar]
  46. Zdenìk P. Bažant. Concrete fracture models: testing and practice. Engineering Fracture Mechanics, 69 (2): 165-205 (2002) [CrossRef] [Google Scholar]
  47. Benzeggagh M L, Kenane M. Measurement of mixedmode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science & Technology, 56 (4): 439- 449 (1996) [CrossRef] [Google Scholar]
  48. Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete. International Journal of Solids & Structures, 25 (3): 299-326 (1989) [CrossRef] [Google Scholar]
  49. Lee J, Fenves G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 124 (8): 892-900 (1998) [CrossRef] [Google Scholar]
  50. Gruau C, Picart D, Belmas R, et al. Ignition of a confined high explosive under low velocity impact. International Journal of Impact Engineering, 36 (4): 537-550 (2009) [CrossRef] [Google Scholar]
  51. Chen W F, Han D J. Plasticity for structural engineers (Springer-Verlag, 1988) [CrossRef] [Google Scholar]
  52. EA de Souza Neto, D Perić, DRJ Owen. Computational methods for plasticity-theory and applications (New York, John Wiley & Sons, 2008) [CrossRef] [Google Scholar]
  53. Williamson D M, Palmer S J P, Proud W G. Fracture studies of PBX simulant materials, Shock Compression of Condensed Matter - American Institute of Physics, 845 (1): 829-832 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.