Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 03001
Number of page(s) 4
Section Microstructural Effects
DOI https://doi.org/10.1051/epjconf/201818303001
Published online 07 September 2018
  1. D.E. Chegodaev, Design of Metal Rubber Components, Press of National Defense Industry, pp. 2–12 (translated by Li Z.Y., 2000) [Google Scholar]
  2. A.O. Hong-Rui, H.Y. Jiang, H. Yan, et al., Research of a metal rubber isolation system based on complex stiffness, Journal of Harbin Institute of Technology 37, pp. 1615–1629 (in Chinese, 2005) [Google Scholar]
  3. E. Piollet, D. Poquillon, G. Michon, Dynamic hysteresis modelling of entangled cross-linked fibres in shear, Journal of Sound and Vibration 383, pp. 248-264 (2016) [CrossRef] [Google Scholar]
  4. D. Rodney, B. Gadot, O.R. Martinez, S. Rolland Du Roscoat, L. Orgéas, Reversible dilatancy in entangled single-wire materials. Nature Materials 15, pp. 72–77 (2015) [CrossRef] [PubMed] [Google Scholar]
  5. J.F. Hou, H.B. Bai, D.W. Li, Damping capacity measurement of elastic porous wiremesh material in wide temperature range. Journal of Materials Processing Technology 206, pp. 412–418 (2008) [CrossRef] [Google Scholar]
  6. Q. Tan, G. He, Stretching behaviors of entangled materials with spiral wire structure. Materials & Design 46, pp.61-65 (2013) [CrossRef] [Google Scholar]
  7. B. Gadot, O. Riu Martinez, S. Rolland Du Roscoat, D. Bouvard, D. Rodney, L. Orgéas, Entangled single-wire NiTi material: A porous metal with tunable superelastic and shape memory properties, Acta Materialia 96, pp. 311-323 (2015) [CrossRef] [Google Scholar]
  8. J. Hu, Q. Du, J. Gao, J. Kang, B. Guo, Compressive mechanical behavior of multiple wire metal rubber, Materials and Design 140, pp. 231–240 (2018) [CrossRef] [Google Scholar]
  9. L. Courtois, E. Maire, M. Perez, D. Rodney, O. Bouaziz, Y.Brechet, Mechanical properties of monofilament entangled materials, Optical Measurements, Modeling, and Metrology, 5. (Springer, New York, NY, 2011) [Google Scholar]
  10. P. Qiao, M. Yang, F. Bobaru, Impact Mechanics and High-Energy Absorbing Materials: Review, Journal of Aerospace Engineering, 21, pp. 235– 248 (2008) [CrossRef] [Google Scholar]
  11. C. Bacon, An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar, Experimental Mechanics, 38, pp. 242-249 (1998) [CrossRef] [Google Scholar]
  12. C. Froustey, M. Lambert, J.L. Charles, J.L. Lataillade, Design of an impact loading machine based on a flywheel device: Application to the fatigue resistance of the high rate pre-straining sensitivity of aluminium alloys, Experimental Mechanics, 47, pp. 709–721 (2007) [CrossRef] [Google Scholar]
  13. D. Rodney, M. Fivel, R. Dendievel, Discrete modeling of the mechanics of entangled materials, Physical Review Letters, 95 (2005) [CrossRef] [Google Scholar]
  14. J. Girardot, F. Dau, A mesoscopic model using the discrete element method for impacts on dry fabrics, Matériaux & Techniques 104,408 (2016) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.